
1

Cluster Scheduling

COS 418: Distributed Systems
Lecture 23

Michael Freedman
[Heavily based on content from Ion Stoica]

1. Illusion of infinite computing resources available on
demand, eliminating need for up-front provisioning

2. The elimination of an up-front commitment

3. The ability to pay for use of computing resources
on a short-term basis

2

Key aspects of cloud computing

From “Above the Clouds: A Berkeley View of Cloud Computing”

• “Services”
– External demand, scale supply to match demand

• “Data analysis”
– Tradeoff scale & completion time

• E.g., use 1 server for 10 hours vs. 10 servers for 1 hour
– Source of demand elasticity!

3

Two main sources of resource demand

Type of contract 2016 Price
(m4.xlarge)

2017 Price
(m4.xlarge)

Spot - 1 hr duration $0.139 / hour $0.10 / hour
Spot– 6 hr duration $0.176 / hour $0.13 / hour

On-demand $0.215 / hour $0.20 / hour

• Source of variable demand?
– Search, social networks, e-commerce, usage have diurnal patterns

– Apocryphal story: AWS exists because Amazon needed to provision
for holiday shopping season, wanted to monetize spare capacity

• But…if provision for peak, what around remaining time?
– Fill-in with non-time-sensitive usage, e.g., various data crunching

– E.g., Netflix using AWS at night for video transcoding 4

Towards fuller utilization

2

Today’s lecture

• Metrics / goals for scheduling resources

• System architecture for big-data scheduling

5

• CPU allocation
– Multiple processors want to execute, OS selects

one to run for some amount of time

• Bandwidth allocation
– Packets from multiple incoming queue want to be

transmitted out some link, switch chooses one

6

Scheduling: An old problem

What do we want from a scheduler?

• Isolation
– Have some sort of guarantee that misbehaved processes

cannot affect me “too much”

• Efficient resource usage
– Resource is not idle while there is process whose demand

is not fully satisfied

– “Work conservation” -- not achieved by hard allocations

• Flexibility
– Can express some sort of priorities, e.g., strict or time based

7

• n users want to share a resource (e.g. CPU)
– Solution: give each 1/n of the shared resource

• Generalized by max-min fairness
– Handles if a user wants less than its fair share
– E.g. user 1 wants no more than 20%

• Generalized by weighted max-min fairness
– Give weights to users according to importance
– User 1 gets weight 1, user 2 weight 2

CPU
100%

50%

0%

33%

33%

33%

100%

50%

0%

20%

40%

40%

100%

50%

0%

33%

66%

Single Resource: Fair Sharing

8

3

• Weighted Fair Sharing / Proportional Shares
– User u1 gets weight 2, u2 weight 1

• Priorities: Give u1 weight 1000, u2 weight 1

• Reservations
– Ensure u1 gets 10%: Give u1 weight 10, sum weights ≤ 100

• Deadline-based scheduling
– Given a job’s demand and deadline, compute user’s reservation / weight

• Isolation: Users cannot affect others beyond their share

Max-Min Fairness is Powerful

9

• Fair queuing explained in a fluid flow system:
reduces to bit-by-bit round robin among flows
– Each flow receives min(ri, f), where

• ri – flow arrival rate
• f – link fair rate (see next slide)

• Weighted Fair Queuing (WFQ)
– Associate a weight with each flow

Max-min Fairness via Fair Queuing

10

Fair Rate Computation

min(ri
i
∑ , f) =C

8
6
2

4
4

2

10

f = 4:

min(8, 4) = 4

min(6, 4) = 4

min(2, 4) = 2

• If link congested, compute f such that

11

min(ri
i
∑ , f ×wi) =C

Fair Rate Computation

(w1 = 3)
(w2 = 1)
(w3 = 1)

f = 2:

min(8, 2*3) = 6

min(6, 2*1) = 2

min(2, 2*1) = 2

• Associate a weight wi with each flow i

• If link congested, compute f such that

8
6
2

2
6

2

10

12

4

Theoretical Properties of Max-Min Fairness

• Share guarantee
– Each user gets at least 1/n of the resource

– But will get less if her demand is less

• Strategy-proof
– Users are not better off by asking for more than they need

– Users have no reason to lie

13

• Job scheduling is not only about a single resource
– Tasks consume CPU, memory, network and disk I/O

• What are task demands today?

Why is Max-Min Fairness Not Enough?

14

Most task need ~
<2 CPU, 2 GB RAM>

Some tasks are
memory-intensive

Some tasks are
CPU-intensive

2000-node Hadoop Cluster at Facebook (Oct 2010)

Heterogeneous Resource Demands

15

How to allocate?

• 2 resources: CPUs & memory

• User 1 wants <1 CPU, 4 GB> per task

• User 2 wants <3 CPU, 1 GB> per task

• What’s a fair allocation?

memCPU

100%

50%

0%

? ?

16

5

• Asset Fairness: Equalize each user’s sum of resource shares

• Cluster with 28 CPUs, 56 GB RAM

– U1 needs <1 CPU, 2 GB RAM> per task,
or <3.6% CPUs, 3.6% RAM> per task

– U2 needs <1 CPU, 4 GB RAM> per task,
or <3.6% CPUs, 7.2% RAM> per task

• Asset fairness yields
– U1: 12 tasks: <43% CPUs, 43% RAM> (∑=86%)

– U2: 8 tasks: <28% CPUs, 57% RAM> (∑=86%)

CPU

User 1
User 2

100%

50%

0%
RAM

43%

57%

43%

28%

A Natural Policy

17

• Approach: Equalize each user’s sum of resource shares

• Cluster with 28 CPUs, 56 GB RAM

– U1 needs <1 CPU, 2 GB RAM> per task,
or <3.6% CPUs, 3.6% RAM> per task

– U2 needs <1 CPU, 4 GB RAM> per task,
or <3.6% CPUs, 7.2% RAM> per task

• Asset fairness yields
– U1: 12 tasks: <43% CPUs, 43% RAM> (∑=86%)

– U2: 8 tasks: <28% CPUs, 57% RAM> (∑=86%)

CPU

User 1
User 2

100%

50%

0%
RAM

43%

57%

43%

28%
Problem: violates share guarantee
User 1 has < 50% of both CPUs and RAM

Better off in separate cluster with half the resources

Strawman for asset fairness

18

Cheating the Scheduler
• Users willing to game the system to get more resources

• Real-life examples

– A cloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low.
Users implemented maps in the reduce slots!

– A search company provided dedicated machines to users that
could ensure certain level of utilization (e.g. 80%).
Users used busy-loops to inflate utilization.

• How achieve share guarantee + strategy proofness for sharing?

– Generalize max-min fairness to multiple resources/
19

• A user’s dominant resource is resource user has biggest share of

– Example:
Total resources:
User 1’s allocation:

Dominant resource of User 1 is CPU (as 25% > 20%)

• A user’s dominant share: fraction of dominant resource allocated

– User 1’s dominant share is 25%

Dominant Resource Fairness (DRF)

5 GB
1 GB

20% RAM

8 CPU
2 CPU

25% CPUs

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica, NSDI’11 20

6

• Apply max-min fairness to dominant shares

• Equalize the dominant share of the users. Example:
– Total resources: <9 CPU, 18 GB>
– User 1 demand: <1 CPU, 4 GB>; dom res: mem (1/9 < 4/18)
– User 2 demand: <3 CPU, 1 GB>; dom res: CPU (3/9 > 1/18)

User 1
User 2

100%

50%

0% CPU
(9 total)

mem
(18 total)

3 CPUs 12 GB

6 CPUs
2 GB

66%
66%

Dominant Resource Fairness (DRF)

21 22

Online DRF Scheduler
Whenever available resources and tasks to run:

Schedule task to user with smallest dominant share

Today’s lecture

1. Metrics / goals for scheduling resources

2. System architecture for big-data scheduling

23

• Many different “Big Data” frameworks
– Hadoop | Spark

– Storm | Spark Streaming | Flink

– GraphLab

– MPI

• Heterogeneity	will	rule

– No	single	framework	optimal	for	all	applications

– So…each	framework	runs	on	dedicated	cluster?
24

Many Competing Frameworks

7

• Inefficient resource usage
– E.g., Hadoop cannot use underutilized resources from Spark

– Not work conserving

• Hard to share data
– Copy or access remotely, expensive

• Hard to cooperate
– E.g., Not easy for Spark to use graphs generated by Hadoop

One	Framework	Per	Cluster	Challenges

25

Common resource sharing layer ?
• Abstracts (“virtualizes”) resources to frameworks

• Enable diverse frameworks to share cluster

• Make it easier to develop and deploy new frameworks

SparkHadoop
SparkHadoop

Resource
Management System

Uniprograming Multiprograming
26

In a cluster:
… a framework (e.g., Hadoop, Spark) manages 1+ jobs

… a job consists of 1+ tasks
… a task (e.g., map, reduce) involves 1+ processes

executing on single machine

Framework
Scheduler

(e.g.,	Job	Tracker)

Executor
(e.g., Task
Tracker)

Executor
(e.g., Task

Traker)

Executor
(e.g., Task
Tracker)

Executor
(e.g., Task
Tracker)

task 1
task 5

task 3
task 7 task 4

task 2
task 6

Job	1: tasks	1,	2,	3,	4
Job	2:	tasks	5,	6,	7

Abstraction	hierarchy	101

27

In a cluster:
… a framework (e.g., Hadoop, Spark) manages 1+ jobs

… a job consists of 1+ tasks
… a task (e.g., map, reduce) involves 1+ processes

executing on single machine

• Seek fine-grained resource sharing
– Tasks typically short: median ~= 10 sec – minutes

– Better data locality / failure-recovery if tasks fine-grained

Abstraction	hierarchy	101

28

8

• Global scheduler takes input, outputs task schedule
– Organization policies
– Resource Availability
– Estimates: Task durations, input sizes, xfer sizes, …

– Job requirements: Latency, throughput, availability…

– Job execution plan: Task DAG, inputs/outups

• Advantages: “Optimal”

• Disadvantages

– More complex, harder to scale (yet Google: 10,000s servers/scheduler)

– Anticipate future requirements, refactor existing 29

Approach #1: Global scheduler
• Centralized Borgmaster + Localized

Borglet (manage/monitor tasks)

• Goal: Find machines for a given job

30

Google’s Borg

job hello = {
runtime = { cell = “ic” }
binary = ‘../hello_webserver’
args = { port = ‘%port%’ }
requirements = {

RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000

}

Large-scale cluster management at Google with Borg
A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, EuroSys 15

• Centralized Borgmaster + Localized
Borglet (manage/monitor tasks)

• Goal: Find machines for a given job

• Used across all Google services

– Services: Gmail, web search, GFS

– Analytics: MapReduce, streaming

• Framework controller sends master
allocation request to Borg for full job

31

Google’s Borg
• Centralized Borgmaster + Localized

Borglet (manage/monitor tasks)

• Goal: Find machines for a given job

• Allocation

– Minimize # / priority preempted tasks

– Pick machines already having copy
of the task’s packages

– Spread over power/failure domains

– Mix high/low priority tasks

32

Google’s Borg

9

• Unit of allocation: resource offer
– Vector of available resources on a node
– E.g., node1: <1CPU, 1GB>, node2: <4CPU, 16GB>

1. Master sends resource offers to frameworks

2. Frameworks:
– Select which offers to accept
– Perform task scheduling
– Unlike global scheduler, requires another level of support

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica, NSDI’11

Approach #2: Offers, not schedule

33

Cluster:
Remaining

Cluster:
Offer A’s Allocation B’s Allocation

(10cpu, 20gb) (2cpu, 2gb) to A (0cpu, 0gb, 0%) (0cpu, 0gb, 0%)

Cluster:
Remaining

Cluster:
Offer A’s Allocation B’s Allocation

(10cpu, 20gb) (2cpu, 2gb) to A (0cpu, 0gb, 0%) (0cpu, 0gb, 0%)

(10cpu, 20gb) (4cpu, 3gb) to A (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

How	to	allocate	resources?		DRF!

CPU Memory
Cluster Supply 10 20

A’s Demand 4 (40%) 2 (10%)
B’s Demand 1 (10%) 5 (25%)

Cluster:
Remaining

Cluster:
Offer A’s Allocation B’s Allocation

(10cpu, 20gb) (2cpu, 2gb) to A (0cpu, 0gb, 0%) (0cpu, 0gb, 0%)

(10cpu, 20gb) (4cpu, 3gb) to A (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(6cpu, 17gb) (1cpu, 3gb) to B (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

Cluster:
Remaining

Cluster:
Offer A’s Allocation B’s Allocation

(10cpu, 20gb) (2cpu, 2gb) to A (0cpu, 0gb, 0%) (0cpu, 0gb, 0%)

(10cpu, 20gb) (4cpu, 3gb) to A (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(6cpu, 17gb) (1cpu, 3gb) to B (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(5cpu, 12gb) (1cpu, 5gb) to B (4cpu, 3gb, 40%) (1cpu, 5gb, 25%)

Cluster:
Remaining

Cluster:
Offer A’s Allocation B’s Allocation

(10cpu, 20gb) (2cpu, 2gb) to A (0cpu, 0gb, 0%) (0cpu, 0gb, 0%)

(10cpu, 20gb) (4cpu, 3gb) to A (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(6cpu, 17gb) (1cpu, 3gb) to B (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(5cpu, 12gb) (1cpu, 5gb) to B (4cpu, 3gb, 40%) (1cpu, 5gb, 25%)

(1cpu, 10gb) (4cpu, 2gb) to A (8cpu, 5gb, 80%) (1cpu, 5gb, 25%)

Cluster:
Remaining

Cluster:
Offer A’s Allocation B’s Allocation

(10cpu, 20gb) (2cpu, 2gb) to A (0cpu, 0gb, 0%) (0cpu, 0gb, 0%)

(10cpu, 20gb) (4cpu, 3gb) to A (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(6cpu, 17gb) (1cpu, 3gb) to B (4cpu, 3gb, 40%) (0cpu, 0gb, 0%)

(5cpu, 12gb) (1cpu, 5gb) to B (4cpu, 3gb, 40%) (1cpu, 5gb, 25%)

(1cpu, 10gb) (4cpu, 2gb) to A (8cpu, 5gb, 80%) (1cpu, 5gb, 25%)

(0cpu, 4gb) (1cpu, 6gb) to B (8cpu, 5gb, 80%) (2cpu, 11gb, 55%)

Today’s lecture

• Metrics / goals for scheduling resources

– Max-min fairness, weighted-fair queuing, DRF

• System architecture for big-data scheduling

– Central allocator (Borg), two-level resource offers (Mesos)

35

