Bitcoin and the Blockchain

Bitcoin: 10,000 foot view

COS 418: Distributed Systems
Lecture 20

Michael Freedman

Problem: Equivocation!

Can Alice “pay” both Bob and Charlie
with same bitcoin ?

(Known as “double spending”)

* New bitcoins are “created” every ~10 min,
owned by “miner” (more on this later)

» Thereafter, just keep record of transfers
— e.g., Alice pays Bob 1 BTC

 Basic protocol:
— Alice signs transaction: txn = Signy.e (BTC, PKg,p)

— Alice shows transaction to others...

How traditional e-cash handled problem

Bank

AN

Alice _ > Bob

* When Alice pays Bob with a coin, Bob validates that coin
hasn’t been spend with trusted third party

* Introduced “blind signatures” and “zero-knowledge protocols”
so0 bank can't link withdrawals and deposits

How traditional e-cash handled problem

Bank

\ Problem: Equivocation!

Alice > Bob Goal: No double-spending in decentralized environment

<€

Approach: Make transaction log
* When Alice pays Bob with a coin, Bob validates that coin

hasn’t been spend with trusted third party 1. public
2. append-only
(Bank maintains linearizable log of transactions 1 3. strongly consistent

5

Bitcoin: 10,000 foot view

* Public
— Transactions are signed: txn = Signyjie (BTC, PKg)

— All transactions are sent to all network participants

Intro to crypto in 5 minutes

* No equivocation: Log append-only and consistent
— All transactions part of a hash chain

— Consensus on set/order of operations in hash chain

Public-Key Cryptography

+ Each party has (public key, private key)

+ Alice’s public key PK
— Known by anybody
— Bob uses PK to encrypt messages fo Alice
— Bob uses PK to verify signatures from Alice

+ Alice’s private/secret key: sk
— Known only by Alice
— Alice uses sk to decrypt ciphertexts sent to her
— Alice uses sk to generate new signatures on messages

Public-Key Cryptography

* (PK, sk) = generateKey(keysize)

* Encryption API
— ciphertext = encrypt (message, PK)
— message = decrypt (ciphertext, sk)

+ Digital signatures API
— Signature = sign (message, sk)
— isValid = verify (signature, message, PK)

Cryptography Hash Functions |

» Take message m of arbitrary length and produces
fixed-size (short) number H(m)

* One-way function
— Efficient: Easy to compute H(m)
— Hiding property: Hard to find an m, given H(m)

+ Assumes “m” has sufficient entropy, not just {*heads”, “tails”}
— Random: Often assumes for output to “look” random

Cryptography Hash Functions I

+ Collisions exist: | possible inputs | >> | possible outputs |

... but hard to find

» Collision resistance:

— Strong resistance: Findanym!=m’ suchthat H(m)==H(m’)
— Weak resistance: Givenm, findm’ suchthat H(m)==H(m’)
— For 160-bit hash (SHA-1)

+ Finding any collision is birthday paradox: 24{160/2} = 280
» Finding specific collision requires 22160

Tamper-evident logging

Blockchain: Append-only hash chain

| | |
(_—| prev: H(') (__l prev: H(') (_vl prev: H(') (_‘
txn 5

txn 6 txn 7

+ Hash chain creates “tamper-evident” log of txns

» Security based on collision-resistance of hash function

— Given m and h = hash(m), difficult to find m’
such that h =hash(m’)and m !=m’

Blockchain: Append-only hash chain

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

e, e,

Owner 0's Owner 1's Owner 2's
Signature Signature Signature
&5 Y
owner 1's | Owner2's |~ Owner 3's
Private Key Private Key Private Key

Bitcoin: A Peer-to-Peer Electronic Cash System

Problem remains: forking

| 1]
J prev: H(') prev: H(') J prev: H(') (_‘
txn 5 ((: txn 6 txn 7
I]
prev: H(') <'| prev: H() (_‘
txn 6’ txn 7’

Goal: Consensus

* Recall Byzantine fault-tolerant protocols to
achieve consensus of replicated log

— Requires: n >= 3f + 1 nodes, at most f faulty

* Problem
— Communication complexity is n
— Requires strong view of network participants

2

Consensus susceptible to Sybils

* All consensus protocols based on membership...
— ... assume independent failures ...

— ... which implies strong notion of identity

» “Sybil attack” (p2p literature ~2002)
— Idea: one entity can create many “identities” in system
— Typical defense: 1 IP address = 1 identity

— Problem: 1P addresses aren’t difficult / expensive to get,
esp. in world of botnets & cloud services

Consensus based on “work”

« Rather than “count” IP addresses, bitcoin “counts” the
amount of CPU time / electricity that is expended

“The system is secure as long as honest nodes
collectively control more CPU power than any

cooperating group of attacker nodes.”
- Satoshi Nakamoto

» Proof-of-work: Cryptographic “proof” that certain
amount of CPU work was performed

Key idea: Chain length requires work

(_I prev: H(I) prev: H(I) (_l prev: H(') (_I prev: H(I) (—I prev: H(I) l
txn 5 txn 8 txn 9

txn 6 txn 7

» Generating a new block requires “proof of work”
+ “Correct’ nodes accept longest chain
+ Creating fork requires rate of malicious work >> rate of correct

— So, the older the block, the “safer” it is from being deleted
20

Use hashing to determine work!

» Recall hash functions are one-way / collision resistant

— Given h, hard to find m such that h = hash(m)

+ But what about finding partial collision?
— m whose hash has most significant bit = 0?
— m whose hash has most significant bit = 00?

— Assuming output is randomly distributed, complexity grows
exponentially with # bits to match

21

Bitcoin proof of work

Find nonce such that
hash (nonce || prev_hash || block data) < target

i.e., hash has certain number of leading O’s

What about changes in total system hashing rate?
» Target is recalculated every 2 weeks

» Goal: One new block every 10 minutes

22

Historical hash rate trends of bitcoin

Bitcoin network: total computation speed

T T T T T T

T
difficulty

7-day window estimate
14-day window estimate
30-day window estimate

L
o
o
-

- 0.0001

PHash/s
Billion difficulty

0.0001 |-

Currently: 2 Exahash/s
2x10"8

Tech: CPU — GPU — FPGA — ASICs 1e0s

- le-06

1e-06 [

1e-08

i i i i i i i
01'09 0110 01'11 01'12 0113 01'14 01'15 01'16 0117
Date

Why consume all this energy?

__
S N1 5635 078125
3a2s

‘‘‘‘‘‘‘

Total BTC In Existence

vvvvv

» Creating a new block creates bitcoin!
— Initially 50 BTC, decreases over time, currently 12.5
— New bitcoin assigned to party named in new block

— Called “mining” as you search for gold/coins
24

Bitcoin is worth (LOTS OF) money!

$2500

2015 2016 2017

. Today'sOpen $9,908.23 Change A $1,400.06
A14.13% Today's High $11,377.33 Market Cap $0.189T
Today's Low $9,908.23 Supply 16,708,663

« 12.5BTC = $140,000+ today

25

Incentivizing correct behavior?

» Race to find nonce and claim block reward, at which time
race starts again for next block

hash (nonce || prev_hash || block data)

— As solution has prev_hash, corresponds to particular chain

+ Correct behavior is to accept longest chain
— “Length” determined by aggregate work, not # blocks

— So miners incentivized only to work on longest chain, as
otherwise solution not accepted

— Remember blocks on other forks still “create” bitcoin, but

only matters if chain in collective conscious (majority)

Form of randomized leader election

» Each time a nonce is found:
— New leader elected for past epoch (~10 min)

— Leader elected randomly, probability of selection
proportional to leader’s % of global hashing power

— Leader decides which transactions comprise block

27

One block = many transactions

Block Block
7*{ Prev Hash ‘ | Nonce‘ >‘| Prev Hash ’ ’Nonce|
IR N, IR N,

» Each miner picks a set of transactions for block
+ Builds “block header”: prevhash, version, timestamp, txns, ...

+ Until hash < target OR another node wins:
— Pick nonce for header, compute hash = SHA256(SHA256(header))

28

Transactions are delayed

Block Block
7*{ Prev Hash ‘ ’Nonce‘ >| Prev Hash ‘ ’Nonce|
SR BN

« At some time T, block header constructed

* Those transactions had been received [T— 10 min, T]

» Block will be generated at time T + 10 min (on average)

+ So transactions are from 10 - 20 min before block creation

» Can be much longer if “backlog” of transactions are long
29

Commitments further delayed

Block Block
7*{ Prev Hash ‘ | Nonce‘ >l Prev Hash ’ ’Nonce|
IR N, SR,

* When do you trust a transaction?
— After we know it is “stable” on the hash chain
— Recall that the longer the chain, the hard to “revert’

» Common practice: transaction “committed” when 6 blocks deep

— i.e., Takes another ~1 hour for txn to become committed
30

Transaction format: strawman

Transaction format

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob SIGNED(Alice)
Transfer 8 coins from Bob to Carol SIGNED(Bob)
Transfer 1 coins from Carol to Alice SIGNED(Carol)

How do you determine if Alice has balance?
Scan backwards to time 0!

31

Inputs: (%] // Coinbase reward

Outputs: 25.0—PK_Alice

Inputs: H(previxn, 0) /25 BTC from Alice
Outputs: 25.0—PK_Bob SIGNED(Alice)
Inputs: H (prevtxn, 0) /25 BTC From Alice
Outputs: 5.0—-PK_Bob, 20.0 —-PK_Alice2 SIGNED(Alice)
Inputs: H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs: 14.9—-PK_Bob SIGNED(Alice)

» Transaction typically has 1+ inputs, 1+ outputs
« Making change: 15t output payee, 2" output self

» Output can appear in single later input (avoids scan back)
32

Transaction format

Inputs: (0] // Coinbase reward

Outputs: 25.0—PK_Alice

Inputs: H(previtxn, 0) /25 BTC from Alice
Outputs: 25.0—-PK_Bob SIGNED(Alice)
Inputs: H (prevtxn, 0) /25 BTC From Alice
Outputs: 5.0—PK_Bob, 20.0 —-PK_Alice SIGNED(Alice)
Inputs: H (previxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs: 14.9—-PK_Bob SIGNED(Alice)

» Unspent portion of inputs is “transaction fee” to miner
» In fact, “outputs” are stack-based scripts
* 1 Block = 1MB max

33

Storage / verification efficiency

¢ Merkle tree

Block
Block Header (Block Hash) Binary tree of hashes
‘ Prev Hash ‘ ‘ Nonce ‘ — Root hash “binds” leaves
given collision resistance
* Using a root hash
Hash01 | Hash23 | — Block header now
P /‘ constant size for hashing
/ y
Lo, : — Can prune tree to reduce
Hash0: 'Hash1 Hash2 Hash3: storage needs over time
(0| [| [me| [ma]

34

Storage / verification efficiency

* Merkle tree
— Binary tree of hashes
— Root hash “binds” leaves

Root Hash given collision resistance

* Using a root hash

Hash01 Hash23 | — Block header now

Block
Block Header (Block Hash)

Prev Hash \ Nonce ‘

/4 constant size for hashing

[N — Can prune tree to reduce

H?§h§ storage needs over time
— Can prune when all

™3 txn outputs are spent

— Now: 80GB pruned,
300GB unpruned .

Not panacea of scale as some claim

» Scaling limitations
— 1 block =1 MB max
— 1 block ~ 2000 txns
— 1 block ~ 10 min
— So, 34 txns / sec
— Log grows linearly, joining requires full dioad and verification

block size

* Visa peak load comparison
— Typically 2,000 txns / sec
— Peak load in 2013: 47,000 txns / sec

36

Summary

» Coins xfer/split between “addresses” (PK) in txns

* Blockchain: Global ordered, append-only log of txns

— Reached through decentralized consensus
» Each epoch, “random” node selected to batch
transactions into block and append block to log
— Nodes incentivized to perform work and act correctly
* When “solve” block, get block rewards + txn fees
* Reward: 12.5 BTC @ ~730 USD/BTC (11-25-16) = $9125/ 10 min
» Only “keep” reward if block persists on main chain

37

Bitcoin & blockchain intrinsically linked

security of
block chain

/ \

\‘/ \\

health of
mining
ecosystem

value of
currency

38

Rich ecosystem: Mining pools

health of
mining
ecosystem

* Mining == gambling:
— Electricity costs $, huge payout, low probability of winning

» Development of mining pools to amortize risk

— Pool computational resources, participants “paid” to mine
e.g., rewards “split” as a fraction of work, etc

— Verification? Demonstrate “easier” proofs of work to admins

— Prevent theft? Block header (coinbase txn) given by pool
39

More than just currency...

10

BLOCKTECH in FINANCIAL SERVICES scap
APPLICATIONS & SOLUTIONS

,--- Brokerage --. -_Exchanges ---_ ,--== Soft Wallets ===, -=== Hard Wallets ===~
* conbase [gfeagos m’iTEE""' conbase gt o oercram qirBitz

Unocoin SRBTCC | | »t (@) “==BITSTamP | Qammony coinbase

BITFINEXS () e {POLONIEX. BTCo :

= x9 iy i bitcoinde GEMINI |

Sconn b : S et Coinkite Microtransactions ==,
satello | @Cglnlfsmem(ob P e (' gz R crangero]

@ cexio B0 GiMesh

== I BIC.=0 1 S /A @ ProTip Srawbay |
Seoooeeaee Liimioid . Trading Platforms -, -7 Capital Markets =~
” - Merchants -, Y / -y { @Chain sy

bitpay % sine Coiniite Ty ! CONIGY.. I HIEDE Y 7y, NASDAD Pivate Market

PE¥ Roow

2 Coinsimple

© onmou
[CliroNIcLED]

==

Yconsnap coinbase

Concecto RO
Trade Finance
S C o

| GcoiN

€2
thingchain . :\M SETLio

third (T solutions)
“eroTu

& caraivsis

BLgckseeR N o

- Payments -

- 1
IS\ pv | | OBLADE @ auamoie

H
:
ncia @Cryptotorp [deniy i
itcoinity. . 9 oot O |
CryptoCoin COIN LY TIC H
Bioe y TRADER !
}

[5 e

cuber
safevcash

|
i
|
¥

| OrderBook
@oinut

MAKE BITNOMIAL]
TERA EXCHANGE /=~ mex

[d 1iicro R
Broker o7,
oxmarket: AlphaPoint

N /05 RN

r Payroll & Insurance ==,
1 <@ paybits O bitwace |
1
i

i OVEVEVIS

-
i cry

i
1consensys soid X

H s
|) <) | @i Manifold

Services ===y .
pronomex B9} | IO HydraChain .
| CIEEEED eris

Software Development

K ge

‘-) Digital Asset Holdings
clearmatics 1tBit

7 DICPOINt. . SERY
i LHMHSSUE
i) LAmMAssy

il

& ComouTLET

iscoin

\._ Modenero Concierge <

by William Mougayar

_-== Investments -

lighthouse

.=~ Money Services

/ CRYPTOPAY

ABRA 7,
g BN G o]

OBitwala

= simplex sy CINER
o = O,
Duphold »
amexo © Coinf
© LocalBitcoins
tF O BlinkTrade

|

\. 2" bridge21 ./
o= Banks
BBVAS UBS |y
> H .,

BNY MELLON gBARCLAYS
% fidor o
L@ "citipankMONT

MIDDLEWARE & SERVICES

CREDITS!

4 Coinkite J 17 factom

o Special APIs ===~ .-

| | IR Open Assets
bitbind.io

w

RN cncormin: SR

ms
o Counterparty £ 1\

5 @eoon o, PEEEEA

7 Smart Contracts -

il

(=== Public
{ obitcoin
4 e

INFRASTRUCTURE & BASE PROTOCOLS
payment -

Miners

Sonero | (
work

| X

[W arcc -l

Bricoincz|il}

ual Capital Ventures © 2015 1.

1"

