
1

Distributed Transactions

and Spanner

COS 418: Distributed Systems
Lecture 19

Michael Freedman

Serializability

Execution of a set of transactions
over multiple items is equivalent
to some serial execution of txns

2

Distributed Transactions

3 4

Consider partitioned data over servers

O

P

Q

• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)

L

L

L

U

U

U

R

R W

W

2

5

Consider partitioned data over servers

O

P

Q

• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager
• Distributed consensus on timestamp (not all ops)

L

L

L

U

U

U

R

R W

W

6

Strawman: Consensus per txn group?

O

P

Q

L

L

L

U

U

U

R

R W

W

R

S

• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

7

• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)

8

Google’s Setting

3

9

Scale-out vs. fault tolerance

O

P

QQQ

PP

OO

• Every tablet replicated via Paxos (with leader election)

• So every “operation” within transactions across tablets
actually a replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

10

• “Global wall-clock time” with bounded uncertainty
– Timestamps become intervals, not single values

time

earliest latest

TT.now()

2*ε

11

TrueTime

Consider event enow which invoked tt = TT.new():
Guarantee: tt.earliest <= tabs(enow) <= tt.latest

Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

12

4

Commit Wait and Replication

T
Acquired locks

Start
consensus

Notify
followers

Commit wait donePick s

13

Achieve
consensus

Release locks

Client:

1. Issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,
include identify of coordinator and buffered writes

5. Waits for commit from coordinator

14

Client-driven transactions

• On commit msg from client, leaders acquire local write locks

– If non-coordinator:
• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

– If coordinator:
• Wait until hear from other participants
• Choose commit timestamp >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks
15

Commit Wait and 2-Phase Commit Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

16

Acquired locks

Acquired locks

Compute sp for each

1. Client issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

5

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

17

Start logging Done logging

Prepared

Acquired locks

Acquired locks

Compute sp for each
Send sp

2. Locally performs writes
3. Chooses coordinator from set of leaders, initiates commit
4. Sends commit msg to each leader, incl. identity of coordinator

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

18

Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each
Compute overall sc

Committed

Send sp

5. Client waits for commit from coordinator

Example

19

TP

Remove X
from friend list

Remove myself
from X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8
[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8
[]

[]

• Given global timestamp, can implement read-only
transactions lock-free (snapshot isolation)

• Step 1: Choose timestamp sread = TT.now.latest()

• Step 2: Snapshot read (at sread) to each tablet
– Can be served by any up-to-date replica

20

Read-only optimizations

6

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

21

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

22

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset

ε = reference ε + worst-case local-clock drift
= 1ms + 200 μs/sec

23

TrueTime implementation

• What about faulty clocks?
– Bad CPUs 6x more likely in 1 year of empirical data

Known unknowns > unknown unknowns

Rethink algorithms to reason about
uncertainty

24

