Consensus and Paxos

Recall the use of Views

COS 418: Distributed Systems
Lecture 12

Michael Freedman

« Let different replicas assume role of primary over time
» System moves through a sequence of views

* How do the nodes agree on view / primary?

CEEEEEEE

&: View #3
CUERERE View #1
s’ P R))

View #2

Consensus

Definition:

1. Ageneral agreement about something

2. An idea or opinion that is shared by all the
people in a group

Origin: Latin, from consentire

Consensus

Given a set of processors, each with an initial value:

* Termination: All non-faulty processes eventually
decide on a value

Agreement: All processes that decide do so on
the same value

Validity: The value that has been decided must
have proposed by some process

Consensus used in systems

Group of servers attempting:

» Make sure all servers in group receive the same updates
in the same order as each other

+ Maintain own lists (views) on who is a current member of
the group, and update lists when somebody leaves/fails

+ Elect a leader in group, and inform everybody

» Ensure mutually exclusive (one process at a time only)
access to a critical resource like a file

Step one: Define your system model

* Network model:

— Synchronous (time-bounded delay) or
asynchronous (arbitrary delay)

— Reliable or unreliable communication

— Unicast or multicast communication

* Node failures:

— Fail-stop (correct/dead) or Byzantine (arbitrary)

Step one: Define your system model

* Network model:

— Synchronous (time-bounded delay) or
asynchronous (arbitrary delay)

— Reliable or unreliable communication

— Unicast or multicast communication

* Node failures:

— Fail-stop (correct/dead) or Byzantine (arbitrary)

Consensus is impossible

... abandon hope, all ye who enter here ...

Impossibility of Distributed Consensus with One Faulty

“FLP” result proces

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusets Insitute of Technology, Cambridge, Massachusetts

* No deterministic o
1-crash-robust
consensus algorithm
exists for
asynchronous model

Warwick, Coventry, England

scriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
(Computer-Communication Networks]: Distributcd.

ices]: Modes of Computation-

nal Key Words Agseement problem, asynchronous system, Byzantine Generals
‘problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, eliability

* Holds even for “weak” consensus (i.e., only some
process needs to decide, not all)

» Holds even for only two states: 0 and 1

Main technical approach

* Initial state of system can end in decision “0” or “1”

» Consider 5 processes, each in some initial state
[11,111] — 1

[11,110] — ? Must exist two

) configurations
[11,100] —* here which differ
[1,1,000] — ? in decision
[1,0,000] — 0

Main technical approach

+ Initial state of system can end in decision “0” or “1”

» Consider 5 processes, each in some initial state
[1,1,1,11] — 1
[1,1,1,1,0] 1

[1,4100] — 1 Assume decision differs
[1,1,0/0,0] — O between these two processes
_)

[1,0,0,00] — 0

Main technical approach

» Goal: Consensus holds in face of 1 failure

One of these configs must be “bi-valent”
(i.e., undecided):
Both futures possible

[1,1'0,0] 110
[1,18800] — 0

Main technical approach

» Goal: Consensus holds in face of 1 failure

One of these configs must be “bi-valent”
(i.e., undecided):
Both futures possible

[1,1'0,0] — 1
11,9001 — 01

* Inherent non-determinism from asynchronous network

» Key result: All bi-valent states can remain in bi-valent
states after performing some work

You won’t believe this one trick!

()
1. System thinks process p crashes, adapts to it...
2. Butthen p recovers and q crashes...
3. Needs to wait for p to rejoin, because can only handle
1 failure, which takes time for system to adapt ...
4. ... repeat ad infinitum ...
\ J/

All is not lost...

* But remember
— “Impossible” in the formal sense, i.e., “there does not exist”

— Even though such situations are extremely unlikely ...

+ Circumventing FLP Impossibility
— Probabilistically
— Randomization

— Partial Synchrony (e.g., “failure detectors”)

Werner Vogels, Amazon CTO

Job openings in my grou

What kind of things am | looking for in you?

“You know your distributed systems theory: You know about logical
time, snapshots, stability, message ordering, but also acid and multi-level
transactions. You have heard about the FLP impossibility argument.
You know why failure detectors can solve it (but you do not have to
remember which one diamond-w was). You have at least once tried to
understand Paxos by reading the original paper.”

Paxos

+ Safety
— Only a single value is chosen
— Only a proposed value can be chosen

— Only chosen values are learned by processes

*k*k

e Liveness

— Some proposed value eventually chosen if fewer than
half of processes fail

— If value is chosen, a process eventually learns it

Roles of a Process

» Three conceptual roles
— Proposers propose values
— Acceptors accept values, where chosen if majority accept

— Learners learn the outcome (chosen value)

* In reality, a process can play any/all roles

Strawman

» 3 proposers, 1 acceptor
— Acceptor accepts first value received

— No liveness on failure

» 3 proposals, 3 acceptors

— Accept first value received, acceptors choose common
value known by majority

— But no such majority is guaranteed

Paxos

» Each acceptor accepts multiple proposals

— Hopefully one of multiple accepted proposals will have a
majority vote (and we determine that)

— If not, rinse and repeat (more on this)
» How do we select among multiple proposals?

* Ordering: proposal is tuple (proposal #, value) = (n, v)
— Proposal # strictly increasing, globally unique

— Globally unique? Trick: set low-order bits to proposer’s ID

20

Paxos Protocol Overview

* Proposers:
1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with n, <n
3. If existing proposal v, returned, propose same value (n, v,)
4. Otherwise, propose own value (n, v)
Note altruism: goal is to reach consensus, not “win”

» Accepters try to accept value with highest proposal n

» Learners are passive and wait for the outcome

21

Paxos Phase 1

* Proposer:
— Choose proposal number n, send <prepare, n> to acceptors

» Acceptors:
—Ifn>n,
* N,=N « promise not to accept any new proposals n’<n
* If no prior proposal accepted
— Reply < promise, n, & >
» Else
— Reply < promise, n, (n, v,) >
— Else
* Reply < prepare-failed >

22

Paxos Phase 2

* Proposer:
— If receive promise from majority of acceptors,
+ Determine v, returned with highest n,,, if exists
» Send <accept, (n, v, || v)> to acceptors

* Acceptors:
— Upon receiving (n, v), ifn=ny,
* Accept proposal and notify learner(s)
n,=n,=n
V=V

23

Paxos Phase 3

» Learners need to know which value chosen

» Approach #1
— Each acceptor notifies all learners
— More expensive

» Approach #2
— Elect a “distinguished learner”
— Acceptors notify elected learner, which informs others

— Failure-prone

24

Paxos: Well-behaved Run Paxos is safe

* Intuition: if proposal with value v decided, then
1 @ 1 @ @ every higher-numbered proposal issued by any

\ / \ proposer has value v.
@ <accept) @ @ decide

(1,v4)> _ Z V1
W@

<accepted, (1 ,v4)>

<prepare, 1> ¥ /' <promise, 1> Majority of
acceptors

accept (n, v):

Next prepare request
with proposal n+1

v is decided

25 26

Race condition leads to liveness problem

Process 0 Process 1 Paxos with leader election

Completes phase 1

ith proposal n0
with prop Starts and completes phase 1

with proposal n1 > n0 Simplify model with each process playing all three roles
Performs phase 2,
acceptors reject If elected proposer can communicate with a majority,

protocol guarantees liveness
Restarts and completes phase 1

with proposal n2 > n1)
Performs phase 2, Paxos can tolerate failures f <N /2
acceptors reject

v V
... can go on indefinitely ...

27

Using Paxos in system

Leader election to decide
transaction coordinator

L 2 3

¢ ©

29

Using Paxos in system

New leader election protocol

ofo- v

Still have split-brain scenario!

3

30

The Part-Time Parliament

Leslie Lamport —

This article appeared in ACM Transactions on Computer Sys-
tems 16, 2 (May 1998), 133-169. Minor corrections were made
on 29 August 2000.

Tells mythical story of Greek island of Paxos with “legislators”
and “current law” passed through parliamentary voting protocol

Misunderstood paper: submitted 1990, published 1998

Lamport won the Turing Award in 2013

31

The Paxos story...

As Paxos prospered, legislators became very busy.

Parliament could no longer handle all details of
government, so a bureaucracy was established.

Instead of passing a decree to declare whether each lot of
cheese was fit for sale, Parliament passed a decree
appointing a cheese inspector to make those decisions.

Cheese inspector = leader
using quorum-based voting protocol

32

The Paxos story...

4)
Parliament passed a decree making AikoTpa the first cheese

inspector. After some months, merchants complained that
AikoTpa was too strict and was rejecting perfectly good cheese.

Parliament then replaced him by passing the decree
1375: T'wuda is the new cheese inspector

But AikoTpa did not pay close attention to what Parliament did,
so he did not learn of this decree right away.

There was a period of confusion in the cheese market when both
AikoTpa and M'wuda were inspecting cheese and making
conflicting decisions.

Split-brain!

33

The Paxos story...

4 N\
To prevent such confusion, the Paxons had to guarantee
that a position could be held by at most one bureaucrat at
any time.

To do this, a president included as part of each decree the
time and date when it was proposed.

A decree making AikoTpa the cheese inspector might read

2716: 8:30 15 Jan 72 — AikaTpa is cheese inspector for
3 months.

Leader gets a lease!

34

The Paxos story...

4)

A bureaucrat needed to tell time to determine if he currently
held a post. Mechanical clocks were unknown on Paxos,
but Paxons could tell time accurately to within 15 minutes
by the position of the sun or the stars.

If AikoTpa’s term began at 8:30, he would not start
inspecting cheese until his celestial observations indicated
that it was 8:45.

Handle clock skew:
Lease doesn’t end until expiry + max skew

35

Solving Split Brain

New leader election protocol

oo
Solution

If Lisn’t part of majority electing L .,

L hew Waits until L's lease expires
before accepting new ops

3

36

Next lecture: Wednesday

Consensus protocol with group
membership + leader election at core

* RAFT (assignment 3 & 4)

10

