
1

Consensus and Paxos

COS 418: Distributed Systems
Lecture 12

Michael Freedman

• Let different replicas assume role of primary over time

• System moves through a sequence of views

• How do the nodes agree on view / primary?

2

Recall the use of Views

P

P
P

View #1

View #2

View #3

Consensus

Definition:

1. A general agreement about something

2. An idea or opinion that is shared by all the
people in a group

Origin: Latin, from consentire

3

Given a set of processors, each with an initial value:

• Termination: All non-faulty processes eventually
decide on a value

• Agreement: All processes that decide do so on
the same value

• Validity: The value that has been decided must
have proposed by some process

4

Consensus

2

Group of servers attempting:

• Make sure all servers in group receive the same updates
in the same order as each other

• Maintain own lists (views) on who is a current member of
the group, and update lists when somebody leaves/fails

• Elect a leader in group, and inform everybody

• Ensure mutually exclusive (one process at a time only)
access to a critical resource like a file

5

Consensus used in systems

• Network model:
– Synchronous (time-bounded delay) or

asynchronous (arbitrary delay)

– Reliable or unreliable communication
– Unicast or multicast communication

• Node failures:
– Fail-stop (correct/dead) or Byzantine (arbitrary)

6

Step one: Define your system model

• Network model:
– Synchronous (time-bounded delay) or

asynchronous (arbitrary delay)

– Reliable or unreliable communication

– Unicast or multicast communication

• Node failures:
– Fail-stop (correct/dead) or Byzantine (arbitrary)

7

Step one: Define your system model

… abandon hope, all ye who enter here …

8

Consensus is impossible

3

• No deterministic
1-crash-robust
consensus algorithm
exists for
asynchronous model

9

“FLP” result

• Holds even for “weak” consensus (i.e., only some
process needs to decide, not all)

• Holds even for only two states: 0 and 1

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state
[1,1,1,1,1] → 1
[1,1,1,1,0] → ?
[1,1,1,0,0] → ?
[1,1,0,0,0] → ?
[1,0,0,0,0] → 0

10

Main technical approach

Must exist two
configurations

here which differ
in decision

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state
[1,1,1,1,1] → 1
[1,1,1,1,0] → 1
[1,1,1,0,0] → 1
[1,1,0,0,0] → 0
[1,0,0,0,0] → 0

11

Main technical approach

Assume decision differs
between these two processes

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

12

Main technical approach

One of these configs must be “bi-valent”
(i.e., undecided):

Both futures possible

1 | 0
0

4

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

• Inherent non-determinism from asynchronous network

• Key result: All bi-valent states can remain in bi-valent
states after performing some work

13

Main technical approach

1
0 | 1

One of these configs must be “bi-valent”
(i.e., undecided):

Both futures possible

14

You won’t believe this one trick!

1. System thinks process p crashes, adapts to it…

2. But then p recovers and q crashes…

3. Needs to wait for p to rejoin, because can only handle
1 failure, which takes time for system to adapt …

4. … repeat ad infinitum …

• But remember
– “Impossible” in the formal sense, i.e., “there does not exist”

– Even though such situations are extremely unlikely …

• Circumventing FLP Impossibility
– Probabilistically

– Randomization

– Partial Synchrony (e.g., “failure detectors”)

15

All is not lost… Why should you care?

16

Werner Vogels, Amazon CTO

Job openings in my group

What kind of things am I looking for in you?

“You know your distributed systems theory: You know about logical
time, snapshots, stability, message ordering, but also acid and multi-level
transactions. You have heard about the FLP impossibility argument.
You know why failure detectors can solve it (but you do not have to
remember which one diamond-w was). You have at least once tried to
understand Paxos by reading the original paper.”

5

Paxos

• Safety
– Only a single value is chosen

– Only a proposed value can be chosen

– Only chosen values are learned by processes

• Liveness ***

– Some proposed value eventually chosen if fewer than
half of processes fail

– If value is chosen, a process eventually learns it

17

Roles of a Process

• Three conceptual roles
– Proposers propose values

– Acceptors accept values, where chosen if majority accept

– Learners learn the outcome (chosen value)

• In reality, a process can play any/all roles

18

Strawman

• 3 proposers, 1 acceptor
– Acceptor accepts first value received

– No liveness on failure

• 3 proposals, 3 acceptors

– Accept first value received, acceptors choose common
value known by majority

– But no such majority is guaranteed

19

Paxos
• Each acceptor accepts multiple proposals

– Hopefully one of multiple accepted proposals will have a
majority vote (and we determine that)

– If not, rinse and repeat (more on this)

• How do we select among multiple proposals?

• Ordering: proposal is tuple (proposal #, value) = (n, v)
– Proposal # strictly increasing, globally unique

– Globally unique? Trick: set low-order bits to proposer’s ID
20

6

Paxos Protocol Overview
• Proposers:

1. Choose a proposal number n

2. Ask acceptors if any accepted proposals with na < n

3. If existing proposal va returned, propose same value (n, va)
4. Otherwise, propose own value (n, v)

Note altruism: goal is to reach consensus, not “win”

• Accepters try to accept value with highest proposal n

• Learners are passive and wait for the outcome

21

Paxos Phase 1

• Proposer:
– Choose proposal number n, send <prepare, n> to acceptors

• Acceptors:
– If n > nh

• nh = n ← promise not to accept any new proposals n’ < n
• If no prior proposal accepted

– Reply < promise, n, Ø >
• Else

– Reply < promise, n, (na , va) >
– Else

• Reply < prepare-failed >
22

Paxos Phase 2
• Proposer:

– If receive promise from majority of acceptors,

• Determine va returned with highest na, if exists
• Send <accept, (n, va || v)> to acceptors

• Acceptors:
– Upon receiving (n, v), if n ≥ nh,

• Accept proposal and notify learner(s)
na = nh = n
va = v

23

Paxos Phase 3
• Learners need to know which value chosen

• Approach #1
– Each acceptor notifies all learners
– More expensive

• Approach #2
– Elect a “distinguished learner”
– Acceptors notify elected learner, which informs others
– Failure-prone

24

7

25

Paxos: Well-behaved Run

<accepted, (1 ,v1)>

1

2

n

.

.

.

1 1

2

n

.

.

.
<prepare, 1>

1

<promise, 1>

1

2

n

.

.

.

<accept,
(1,v1)>

decide
v1

• Intuition: if proposal with value v decided, then
every higher-numbered proposal issued by any
proposer has value v.

26

Paxos is safe

Majority of
acceptors

accept (n, v):

v is decided

Next prepare request
with proposal n+1

Race condition leads to liveness problem

Completes phase 1
with proposal n0

27

Starts and completes phase 1
with proposal n1 > n0

Performs phase 2,
acceptors reject

Restarts and completes phase 1
with proposal n2 > n1

Process 0 Process 1

Performs phase 2,
acceptors reject

… can go on indefinitely …

Paxos with leader election

• Simplify model with each process playing all three roles

• If elected proposer can communicate with a majority,
protocol guarantees liveness

• Paxos can tolerate failures f < N / 2

28

8

29

Using Paxos in system

Leader election to decide
transaction coordinator

1 2 3L L

30

Using Paxos in system

New leader election protocol

2 3

Still have split-brain scenario!

L new

• Tells mythical story of Greek island of Paxos with “legislators”
and “current law” passed through parliamentary voting protocol

• Misunderstood paper: submitted 1990, published 1998

• Lamport won the Turing Award in 2013
31 32

The Paxos story…

As Paxos prospered, legislators became very busy.

Parliament could no longer handle all details of
government, so a bureaucracy was established.

Instead of passing a decree to declare whether each lot of
cheese was fit for sale, Parliament passed a decree
appointing a cheese inspector to make those decisions.

Cheese inspector ≈ leader
using quorum-based voting protocol

9

33

The Paxos story…

Parliament passed a decree making ∆ῐκστρα the first cheese
inspector. After some months, merchants complained that
∆ῐκστρα was too strict and was rejecting perfectly good cheese.

Parliament then replaced him by passing the decree

1375: Γωυδα is the new cheese inspector

But ∆ῐκστρα did not pay close attention to what Parliament did,
so he did not learn of this decree right away.

There was a period of confusion in the cheese market when both
∆ικ̆στρα and Γωυδα were inspecting cheese and making
conflicting decisions.

Split-brain!
34

The Paxos story…

To prevent such confusion, the Paxons had to guarantee
that a position could be held by at most one bureaucrat at
any time.

To do this, a president included as part of each decree the
time and date when it was proposed.

A decree making ∆ῐκστρα the cheese inspector might read

2716: 8:30 15 Jan 72 – ∆ῐκστρα is cheese inspector for
3 months.

Leader gets a lease!

35

The Paxos story…

A bureaucrat needed to tell time to determine if he currently
held a post. Mechanical clocks were unknown on Paxos,
but Paxons could tell time accurately to within 15 minutes
by the position of the sun or the stars.

If ∆̆ικστρα’s term began at 8:30, he would not start
inspecting cheese until his celestial observations indicated
that it was 8:45.

Handle clock skew:
Lease doesn’t end until expiry + max skew

L

36

Solving Split Brain

New leader election protocol

2 3L new

Solution
If L isn’t part of majority electing L new

L new waits until L’s lease expires
before accepting new ops

10

Next lecture: Wednesday

Consensus protocol with group
membership + leader election at core

• RAFT (assignment 3 & 4)

37

