
1

View Change Protocols and
Reconfiguration

COS 418: Distributed Systems
Lecture 11

Kyle Jamieson

1. More primary-backup replication

2. View changes

3. Reconfiguration

2

Today

• Nominate one replica primary
– Clients send all requests to primary
– Primary orders clients’ requests

Review: primary-backup replication

3

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients
shl

Servers

• Last time: Primary-Backup case study

• Today: State Machine Replication with many replicas
– Survive more failures

4

From two to many

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients
shl

Servers

2

• State Machine Replication for any number of replicas

• Replica group: Group of 2f + 1 replicas
– Protocol can tolerate f replica crashes

Viewstamped Replication Assumptions:

1. Handles crash failures only
– Replicas fail only by completely stopping

2. Unreliable network: Messages might be lost,
duplicated, delayed, or delivered out-of-order

5

Introduction to Viewstamped Replication
1. configuration: identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

6

Replica state

⟨op1, args1⟩ ⟨op2, args2⟩ ⟨op3, args3⟩ ⟨op4, args4⟩ ...

1. Primary adds request to end of its log

2. Replicas add requests to their logs in primary’s log order

3. Primary waits for f PrepareOKs à request is committed
7

Normal operation

Client

A (Primary)

B

C
Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

• Protocol guarantees state machine replication

• On execute, primary knows request in f + 1 = 2 nodes’ logs
– Even if f = 1 then crash, ≥ 1 retains request in log

8

Normal operation: Key points

Client

A (Primary)

B

C
Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

3

• Previous Request’s commit piggybacked on current Prepare

• No client Request after a timeout period?
– Primary sends Commit message to all backups

9

Where’s the commit message?

Client

A (Primary)

B

C
Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

+Commit previous

• So far: Works for f failed backup replicas

• But what if the f failures include a failed primary?
– All clients’ requests go to the failed primary
– System halts despite merely f failures

10

The need for a view change

1. More primary-backup replication

2. View changes
– With Viewstamped Replication
– Using a View Server
– Failure detection

3. Reconfiguration

11

Today
• Let different replicas assume role of primary over time

• System moves through a sequence of views
– View = (view number, primary id, backup id, ...)

12

Views

P

P
P

View #1

View #2

View #3

4

• Backup replicas monitor primary

• If primary seems faulty (no Prepare/Commit):
– Backups execute the view change protocol to

select new primary
• View changes execute automatically, rapidly

13

View change protocol

• Need to keep clients and replicas in sync: same
local state of the current view
• Same local state at clients
• Same local state at replicas

• View changes happen locally at each replica

• Old primary executes requests in the old view, new
primary executes requests in the new view

• Want to ensure state machine replication

• So correctness condition: Executed requests
1. Survive in the new view
2. Retain the same order in the new view

14

Making the view change correct

1. configuration: sorted identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

3. view-number: identifies primary in configuration list

4. status: normal or in a view-change

15

Replica state (for view change)

1. B notices A has failed, sends Start-View-Change

2. C replies Do-View-Change to new primary, with its log

3. B waits for f replies, then sends Start-View

4. On receipt of Start-View, C replays log, accepts new ops
16

View change protocol

B (New Primary)

C
Time à

Start-
View

log

Start-View-
Change

view #

Do-View-
Change

log

(!) ++view #

(f = 1)

5

• Old primary A must have received one or two PrepareOK
replies for that request (why?)

• Request is in B’s or C’s log (or both): so it will survive
into new view

17

View change protocol: Correctness

B (New Primary)

C
Time àPrepareOK

Start-
View

log

Start-View-
Change

view #

Do-View-
Change

log

Executed request,
previous view

A (Old Primary)
Execute

(f = 1)

• Any group of f + 1 replicas is called a quorum

• Quorum intersection property: Two quorums in
2f + 1 replicas must intersect at at least one replica

18

Principle: Quorums (f = 1)

et cetera...

Normal Operation:

• Quorum that processes one request: Q1
– ...and 2nd request: Q2

• Q1 ∩ Q2 has at least one replica à
– Second request reads first request’s effects

19

Applying the quorum principle

View Change:

• Quorum processes previous (committed) request: Q1
– ...and that processes Start-View-Change: Q2

• Q1 ∩ Q2 has at least one replica à
– View Change contains committed request

20

Applying the quorum principle

6

• What’s undesirable about this sequence of events?

• Why won’t this ever happen? What happens instead?
21

Split Brain

Client 1

A (Primary)

C

Network partition

Client 2

Start-ViewStart-VC

Execute Execute

(not all protocol messages shown)

Request Request

Execute

Request

Execute

Request

B (New Primary)

1. More primary-backup replication

2. View changes
– With Viewstamped Replication
– Using a View Server
– Failure detection

3. Reconfiguration

22

Today

• A single View Server could decide who is primary
– Clients and servers depend on view server

• Don’t decide on their own (might not agree)

• Goal in designing the VS:
– Only want one primary at a time for correct state

machine replication

23

Would centralization simplify design?
• For now, assume VS never fails

• Each replica now periodically pings the VS
– VS declares replica dead if missed N pings in a row
– Considers replica alive after a single ping received

• Problem: Replica can be alive but because of
network connectivity, be declared “dead”

24

View Server protocol operation

7

25

View Server: Split Brain

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server
(1, S1, S2)

(2, S2, −)

26

One possibility: S2 in old view

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server
(1, S1, S2)

(1, S1, S2)
(1, S1, S2)(2, S2, −)

(2, S2, −)

27

Also possible: S2 in new view

S1

Client

(1, S1, S2)
(2, S2, −)

S2

View Server
(1, S1, S2)

(1, S1, S2)(2, S2, −)
(2, S2, −)

Take-away points:

• Split Brain problem can be avoided both:
– In a decentralized design (VR)
– With centralized control (VS)

• But protocol must be designed carefully so that
replica state does not diverge

28

Split Brain and view changes

8

1. More primary-backup replication

2. View changes
– With Viewstamped Replication
– Using a View Server
– Failure detection

3. Reconfiguration

29

Today
• Both crashes and network failures are frequent: the

“common case”

• Q: How does one replica estimate whether another
has crashed, or is still alive?

• A: Failure detection algorithm
– So far, we’ve seen Viewstamped Replication e.g.:

• Replicas listen for Prepare or Commit
messages from the Primary

• Declare primary failed when hear none for
some period of time

30

Failure detection

• Completeness: Each failure is detected

• Accuracy: There is no mistaken detection

• Speed: Time to first detection of a failure

• Scale (if significant in system context):
– Equal processing load on each node
– Equal network message load

31

Failure detection: Goals

A B C

X

32

Centralized versus Gossip

A B C

X
“X is alive.”“X is alive.”“X is alive.”

Centralized Gossip

• C thinks X is dead • Overcomes failure

“X is alive.”

“B & X
are alive.”

9

1. More primary-backup replication

2. View changes

3. Reconfiguration

33

Today
• What if we want to replace a faulty replica with a

different machine?
– For example, one of the backups may fail

• What if we want to change the replica group size?
– Decommission a replica
– Add another replica (increase f, possibly)

34

The need for reconfiguration

• Protocol that handles these possibilities is called the
reconfiguration protocol

1. configuration: sorted identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

3. view-number: identifies primary in configuration list

4. status: normal or in a view-change

5. epoch-number: indexes configurations

35

Replica state (for reconfiguration)

• Primary immediately stops accepting new requests

36

Reconfiguration (1)

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration Prepare PrepareOK

new-config

D (add)

(f = 1)

10

• Primary immediately stops accepting new requests

• No up-call executing this request
37

Reconfiguration (2)

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

(f = 1)

• Primary sends Commit messages to old replicas

• Primary sends StartEpoch message to new replica(s)
38

Reconfiguration (3)

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

Commit

StartEpoch

(f = 1)

1. Update state with new epoch-number
2. Fetch state from old replicas, update log
3. Send EpochStarted msgs to replicas being removed

39

Reconfiguration in new group {A, B, D}

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

EpochStarted

Commit

StartEpoch

1. Respond to state transfer requests from others

2. Send StartEpoch messages to new replicas if they
don’t hear EpochStarted (not shown above)

40

Reconfiguration at replaced replicas {C}

Client

A (Primary)

B

C (remove)

Time à

Reconfiguration

new-config

D (add)

Reply

Pr
ep

ar
e,

Pr

ep
ar

eO
K

EpochStarted

Commit

StartEpoch

11

• If admin doesn’t wait for reconfiguration to complete,
may cause > f failures in old group

• Can’t shut down replicas on receiving Reply at client

• Fix: A new type of request CheckEpoch to report the
current epoch, goes thru normal request processing

41

Shutting down old replicas
• Primary fails or has network connectivity problems?
• Majority partitioned from primary?

à Rapidly execute view change

• Replica permanently fails or is removed?
• Replica added?

à Administrator initiates reconfiguration protocol

42

Conclusion: What’s useful when

Monday topic:
Consensus and Paxos

43

