
1

Conflict resolution in eventual
consistency

COS 418: Distributed Systems
Lecture 9

Michael Freedman

[Selected content adapted from M. Shapiro and I. Stoica]

• Eventual consistency: If no new updates to the
object, eventually all accesses will return the last
updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

• Why do people like eventual consistency?
– Fast read/write of local copy of data

– Disconnected operation

2

Eventual consistency

• Encountered in many different settings:
– Peer-to-peer (Bayou)
– Multi-master clusters (Dynamo)

• Potential solutions
– “Last writer wins”

• Thomas Write Rule for DBs with timestamp-based
concurrency control: Ignore outdated writes

– Application-specific merge/update: Bayou, Dynamo

3

Concurrent writes can conflict

Towards generality?

4

2

• Consider banking (double-entry bookkeeping):
– Initial: Alice = $50, Bob = $20
– Alice pays Bob $10

• Option 1: set Alice to $40, set Bob to $30
• Option 2: decrement Alice -$10, incremental Bob +$10

– #2 better, but can’t always ensure Alice >= $0

• Works because common mathematical ops are
– Commutative: A ◎ B == B ◎ A
– Invertible: A ◎ A-1 == 1

5

General approach:
Encode ops as incremental update

6

Consider shared word processing
• How do I insert a new word?

– Send entire doc to server? Not efficient

– Send update operation!

7

Consider shared word processing
• How do I insert a new word?

– Send entire doc to server? Not efficient

– Send update operation! insert (string, position) = insert(“1500s”, 166)

– Warning: Insert (rather than replace) shifted position of all following text

8

Operations must be commutative

$40

$30

$45

Withdraw
$10

Deposit
$15

Deposit
$15

Withdraw
$10

$55

Delete
(1, 0)

C

A

B

D

Insert
(“1500s”, 166)

Delete
(1, 0)

[delete 1 char as pos 0]

3

9

Operations must be commutative

$40

$30

$45

Withdraw
$10

Deposit
$15

Deposit
$15

Withdraw
$10

$55

A

B

D

Insert
(“1500s”, 166)

Delete
(1, 0)

Delete
(1, 0)

[delete 1 char as pos 0]

C

Insert
(“1500s”, 166)

PROBLEM!

10

Operations must be commutative

$40

$30

$45

Withdraw
$10

Deposit
$15

Deposit
$15

Withdraw
$10

$55

A

B

D

Insert
(“1500s”, 166)

Delete
(1, 0)

Delete
(1, 0)

[delete 1 char as pos 0]

C

Insert
(“1500s”, 165)

11

Operations must be commutative

$40

$30

$45

Withdraw
$10

Deposit
$15

Deposit
$15

Withdraw
$10

$55

A

B

D

Insert
(“1500s”, 166)

Delete
(1, 0)

C

E F

G H

Operational Transformation

Pioneered in GROVE (GRoup Outline Viewing Edit)
C. Ellis and S. Gibbs, 1989

12

Now found in Apache Wave & Google Docs

4

• State of system is S, ops a and b performed by concurrently on state S

• Different servers can apply concurrent ops in different sequential order
– Server 1:

• Receives a, applies a to state S: S ◎ a
• Receives b (which is dependent on S, not S ◎ a)
• Transforms b across all ops applied since S (namely a): b’ = OT(b, { a })
• Applies b’ to state: S ◎ a ◎ b’

– Server 2
• Receives b, applies b to state: S ◎ b
• Receives a, performs transformation a’ = OT(a, { b }),
• Applies a’ to state: S ◎ b ◎ a’

• Servers 1 and 2 have identical final states: S ◎ a ◎ b’ == S ◎ b ◎ a’
13

Operational Transformation (OT)

14

Operational Transformation (OT)
(Used in Google Docs, EtherPad, etc.)

Alice Bob

Server

ins
“ABC”

ins
“DE”

ins
“ABC”

ins
“DE”

Ops:

State:ABCDE ABCDE
Ops:

State:

15

Operational Transformation (OT)
(Used in Google Docs, EtherPad, etc.)

Alice Bob

Server

ins
“ABC”

ins
“DE” del 4del 2 ins

“ABC”
ins
“DE”

Ops:

State:

Ops:

State: ACDE ABCE

del 4del 2

16

Operational Transformation (OT)
(Used in Google Docs, EtherPad, etc.)

Alice Bob

Server

ins
“ABC”

ins
“DE” del 4del 2 ins

“ABC”
ins
“DE”

Ops:

State:

del 2del 4 del 2Ops:

State: ACEACD

5

17

Operational Transformation (OT)
(Used in Google Docs, EtherPad, etc.)

Alice Bob

Server

ins
“ABC”

ins
“DE” del 4del 2 ins

“ABC”
ins
“DE”

Ops:

State:

del 2del 4

del 2del 4 del 2del 3

T T

Ops:

State: ACEACE

More rigorous approach:

Conflict-free replicated data type

Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski
2011

18

Definition of EC vs Strong EC

• Eventual delivery: An update delivered at some correct
replica is eventually delivered to all correct replicas

• Termination: All method executions terminate

• Convergence: Correct replicas that have delivered the
same updates eventually reach equivalent state
• Doesn’t preclude roll backs and reconciling

• Strong Convergence: Correct replicas that have
delivered the same updates have equivalent state

19

State-based approach

An object is a tuple (𝑆, 𝑠0, 𝑞, 𝑢,𝑚)

• Local queries, local updates

• Send full state: on receive, merge
• Update is said ‘delivered’ at some replica when it is

included in its casual history

• Causal History: 𝐶 = 𝑐1,… , 𝑐𝑛 	
• where	ci	goes	through	a	sequence	of	states:		𝑐𝑖0,… , 𝑐𝑖𝑘 …

20

payload set
initial
state query

update
merge

6

State-based replication

• Local at source 𝑠B.u(a), 𝑠C.u(b), …
• Precondition, compute
• Update local payload

21

• Causal History:

• on query: 𝑐DE = 𝑐DEFB

• on update: 𝑐DE = 𝑐DEFB ∪ {𝑢DE 𝑎 }

State-based replication

• Local at source 𝑠B.u(a), 𝑠C.u(b), …
• Precondition, compute
• Update local payload

22

• Causal History:

• on query: 𝑐DE = 𝑐DEFB

• on update: 𝑐DE = 𝑐DEFB ∪ {𝑢DE 𝑎 }

State-based replication

• Local at source 𝑠B.u(a), 𝑠C.u(b), …

• Precondition, compute
• Update local payload

• Convergence

• Episodically: send 𝑠D payload
• On delivery: merge payloads

23

• Causal History:

• on query: 𝑐DE = 𝑐DEFB

• on update: 𝑐DE = 𝑐DEFB ∪ {𝑢DE 𝑎 }

• on merge: 𝑐DE = 𝑐DEFB ∪ 𝑐DKEK

State-based replication

• Local at source 𝑠B.u(a), 𝑠C.u(b), …

• Precondition, compute
• Update local payload

• Convergence

• Episodically: send 𝑠D payload
• On delivery: merge payloads

24

• Causal History:

• on query: 𝑐DE = 𝑐DEFB

• on update: 𝑐DE = 𝑐DEFB ∪ {𝑢DE 𝑎 }

• on merge: 𝑐DE = 𝑐DEFB ∪ 𝑐DKEK

7

State-based replication

25

• Local at source 𝑠B.u(a), 𝑠C.u(b), …
• Precondition, compute
• Update local payload

• Convergence

• Episodically: send 𝑠D payload
• On delivery: merge payloads

• Causal History:

• on query: 𝑐DE = 𝑐DEFB

• on update: 𝑐DE = 𝑐DEFB ∪ {𝑢DE 𝑎 }

• on merge: 𝑐DE = 𝑐DEFB ∪ 𝑐DKEK

State-based replication

• Desired property:
• After receiving all updates (irrespective of order),

each replica will have same state

26

Example: Union Set

• u: add new element to local replica

• q: return entire set

• merge: union between remote set and local replica

{5}

{5}

{5}

{5}

{5}

{5}

{5} U {3} = {3, 5}

{5} U {7} = {5, 7}

{3, 5} U {5, 7} = {3, 5, 7}

{5, 7} U {3, 5} = {3, 5, 7}

{5} U {3, 5} = {3, 5}

{3, 5} U {5, 7} = {3, 5, 7}

Example

• Partial order ⊆ on sets

• ⊔ : U (set union)

• Then, we have:
– commutative: A U B = B U A

– idempotent: A U A = A

– associative: (A U B) U C = A U (B U C)

8

Example

• Partial order ≤ on set of integers

• ⊔ : max()

• Then, we have:
– commutative: max(x, y) = max(y, x)

– idempotent: max(x, x) = x
– associative: max(max(x, y), z) = max(x, max(y, z))

Example: Grow-Only Counter

Example: Positive-Negative Counter Semi-lattice
• Partial order ≤ set S with a least upper bound (LUB),

denoted ⊔
– m = x ⊔ y is a LUB of { x, y } under ≤ iff
∀m′, x ≤ m′ ∧ y ≤ m′
⇒ x ≤ m ∧ y ≤ m ∧ m ≤ m′

• It follows that ⊔ is:
– commutative: x ⊔ y = y ⊔ x
– idempotent: x ⊔ x = x
– associative: (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z)

9

Monotonic Semi-lattice Object

• A state-based object with partial order ≤ and the
following properties, is a monotonic semi-lattice:

1. Set S of values forms a semi-lattice ordered by ≤

2. Merging state s with remote state s′ computes the
LUB of the two states, i.e., s • m (s′) = s ⊔ s′

3. State is monotonically non-decreasing across
updates, i.e., s ≤ s • u

Convergent Replicated Data Type (CvRDT)

• Theorem: Assuming eventual delivery and
termination, any state-based object that satisfies
the monotonic semi-lattice property is SEC

• Why?
– Don’t care about order:

• Merge is both commutative and associative

– Don’t care about delivering more than once
• Merge is idempotent

• Update-based CRDTs:
– Sends update operations, not state like CvRDT

• Operations are commutative, but not idempotent

– System must ensure all ops are delivered to other
replicas, without duplication, but in any order

– Often used in more complex settings for
concurrent editing

35

Commutative Replicated Data Type (CmRDT)

Industry Use of CRDTs:

Databases: Redis, Riak, Facebook Apollo

Other: League of Legends Chat
Soundcloud user stream
TomTom device sync

36

10

New Module on Monday:

Replicated State Machines

37

