Scaling Out Key-Value Storage

Horizontal or vertical scalability?

COS 418: Distributed Systems
Lecture 8

Kyle Jamieson

Vertical Scaling Horizontal Scaling

Horizontal scaling is challenging

* Probability of any failure in given period = 1-(1-p)"
— p = probability a machine fails in given period
— n = number of machines

* For 50K machines, each with 99.99966% available
—16% of the time, data center experiences failures

* For 100K machines, failures 30% of the time!

Main challenge: Coping with constant failures

Today

1. Techniques for partitioning data
— Metrics for success

2. Case study: Amazon Dynamo key-value store




Scaling out: Place and partition

* Problem 1: Data placement
— On which node(s) to place a partition?

+ Maintain mapping from data object to responsible
node(s)

* Problem 2: Partition management
— Including how to recover from node failure
* e.g., bringing another node into partition group
— Changes in system size, i.e. nodes joining/leaving

+ Centralized: Cluster manager
* Decentralized: Deterministic hashing and algorithms

Modulo hashing

+ Consider problem of data partition:
— Given object id X, choose one of k servers to use

* Suppose instead we use modulo hashing:
— Place X on server i = hash(X) mod k

» What happens if a server fails or joins (k € k=%=1)?
— or different clients have different estimate of k?

Problem for modulo hashing:
Changing number of servers

h(x) =x+1 (mod 4)
Add one machine: h(x) = x + 1 (mod 5)
A

e -

Server

All entries get remapped to new nodes!
- Need to move objects over the network

1 ilill ..... l; ........... r

0 ............................................ -

5 7 10 11 27 29 36 38 40
Object serial number

Consistent hashing

— Assign n tokens to random points on
mod 2* circle; hash key size = k

— Hash object to random circle position

— Put object in closest clockwise bucket 12
— successor (key) - bucket

* Desired features —
— Balance: No bucket has “too many” objects

— Smoothness: Addition/removal of token
minimizes object movements for other buckets




Consistent hashing’s load balancing problem

+ Each node owns 1/nth of the ID space in expectation
— Says nothing of request load per bucket

« If a node fails, its successor takes over bucket
— Smoothness goal v': Only localized shift, not O(n)

— But now successor owns two buckets: 2/n™ of key space
* The failure has upset the load balance

Virtual nodes

» ldea: Each physical node implements v virtual nodes
— Each physical node maintains v > 1 token ids
» Each token id corresponds to a virtual node
« Each virtual node owns an expected 1/(vn)th of ID space

* Upon a physical node’s failure, v virtual nodes fail
— Their successors take over 1/(vn) more

* Result: Better load balance with larger v

Today

1. Techniques for partitioning data

2. Case study: the Amazon Dynamo key-
value store

1"

Dynamo: The P2P context

+ Chord and DHash intended for wide-area P2P systems
— Individual nodes at Internet’s edge, file sharing

+ Central challenges: low-latency key lookup with small
forwarding state per node

* Techniques:
— Consistent hashing to map keys to nodes

— Replication at successors for availability under failure




Amazon’s workload (in 2007) How does Amazon use Dynamo?

«Tens of thousands of servers in globally-distributed *+"Shopping:cart
data centers - ,

4 : v _Session info
«- Peak load: Tens of millions of customers » " -.—Maybe recently visited products” et c.?

- Tiered service-oriented architecture : "o PrOdUCt list
. '~ Stateless web page rendering servers, atop : : . 5 Mostly read-only, replication for high read throughput
; -.— Stateless aggregator servers, atop .
" — Stateful data stores (e.g. Dynamo)
-~ ¢ put(.), get(): values “usually less than 1 MB” .

o ¢

Dynamo requirements Design questions

.. nghly available writes despite failures * How is data placed and replicated?
= DeSpIte d|sks falllng, network routes flapping, “data

* How are requests routed and handled in a replicated

Non-requlrement. Securlty, Viz. authentlcatlon, system?
authorization (used in a non-hostile environment)

* How to cope with temporary and permanent

o }-_ow request-response latency: focus on 99.9% SLA

2 lncrementally scalable as servers grow to workload
— Adding-“nodes” should be seamless

ol Comprehen3|ble conflict resolution :
-+~— High availability in above sense implies conflicts .

16




Dynamo’s system interface

+ Basic interface is a key-value store
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

+ get(key) - value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

* put(key, context, value) > “OK”

— Context indicates which versions this version
supersedes or merges

Dynamo’s techniques

* Place replicated data on nodes with consistent hashing

« Maintain consistency of replicated data with vector clocks

— Eventual consistency for replicated data: prioritize
success and low latency of writes over reads

* And availability over consistency (unlike DBs)

« Efficiently synchronize replicas using Merkle trees

Key trade-offs: Response time vs.
consistency vs. durability

Data placement

put(K....), get(K)
requests go to me

Coordinator node
/ Nodes B, C
\ i and D store
i keysin

range (A,B)

3 i including
\ s
[ONRON

K.
Each data item is replicated at N virtual nodes (e.g., N = 3)

Data replication

* Much like in Chord: a key-value pair > key’'s N
successors (preference list)

— Coordinator receives a put for some key

— Coordinator then replicates data onto nodes in the
key’s preference list

» Preference list size > N to account for node failures
» For robustness, the preference list skips tokens to

ensure distinct physical nodes

20




Gossip and “lookup”

+ Gossip: Once per second, each node contacts a
randomly chosen other node
— They exchange their lists of known nodes
(including virtual node IDs)

» Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times

21

Partitions force a choice between
availability and consistency

» Suppose three replicas are partitioned into two and one

= &)

* If one replica fixed as master, no client in other partition can write

* In Paxos-based primary-backup, no client in the partition of
one can write

» Traditional distributed databases emphasize consistency
over availability when there are partitions

22

Alternative: Eventual consistency

» Dynamo emphasizes availability over consistency when there
are partitions

+ Tell client write complete when only some replicas have stored it
* Propagate to other replicas in background

» Allows writes in both partitions...but risks:
— Returning stale data
— Write conflicts when partition heals:

© 2y

put (k,vp) put(k,vy)

?2@%$!!
23

Mechanism: Sloppy quorums

* If no failure, reap consistency benefits of single master
— Else sacrifice consistency to allow progress

* Dynamo tries to store all values put() under a key on
first N live nodes of coordinator’s preference list

* BUT to speed up get() and put():
— Coordinator returns “success” for put when W <N
replicas have completed write
— Coordinator returns “success” for get when R <N
replicas have completed read

24




Sloppy quorums: Hinted handoff

» Suppose coordinator doesn’t receive W replies when
replicating a put()
— Could return failure, but remember goal of high
availability for writes...

» Hinted handoff: Coordinator tries further nodes in
preference list (beyond first N) if necessary

— Indicates the intended replica node to recipient

— Recipient will periodically try to forward to the
intended replica node

25

Hinted handoff: Example

» Suppose C fails

L . Key K
— Node E is in preference list /
* Needs to receive replica of /®
the data Coordinator
— Hinted Handoff: replica at E’ {7 Nodes B

points to node C

\ i and D store
keys in
i range (A,B)

\ ; including
« When C comes back T

— E forwards the replicated data
back to C

26

Wide-area replication

+ Last Y], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

+ Blocking on writes to a remote data center would
incur unacceptably high latency

— Compromise: W < N, eventual consistency

27

Sloppy quorums and get()s

» Suppose coordinator doesn’t receive R replies when
processing a get()

— Penultimate 1, § 4.5: “R is the min. number of nodes
that must participate in a successful read operation.”

» Sounds like these get()s fail

* Why not return whatever data was found, though?
— As we will see, consistency not guaranteed anyway. ..

28




Sloppy quorums and freshness

+ Common case given in paper: N=3; R=W =2
— With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

* If no failures, yes:
— Two writers saw each put()
— Two readers responded to each get()
— Write and read quorums must overlap!

29

Sloppy quorums and freshness

+ Common case given in paper: N=3, R=W =2
— With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

* With node failures, no:
— Two nodes in preference list go down
* put() replicated outside preference list

— Two nodes in preference list come back up
« get() occurs before they receive prior put()

30

Conflicts

* Suppose N =3, W=R =2, nodes are named A, B, C
— 18t put(k, ...) completes on A and B
— 2" put(k, ...) completes on B and C
— Now get(k) arrives, completes first at A and C

+ Conflicting results from A and C
— Each has seen a different put(k, ...)

* Dynamo returns both results; what does client do now?

31

Conflicts vs. applications

» Shopping cart:
— Could take union of two shopping carts

— What if second put#) was result of user deleting item
from cart stored in first put()?

* Result: “resurrection” of deleted item

« Can we do better? Can Dynamo resolve cases when
multiple values are found?

— Sometimes. If it can’t, application must do so.

32




Version vectors (vector clocks)

 \Version vector: List of (coordinator node, counter) pairs
-e.g.,[(A 1), (B,3),..]

+ Dynamo stores a version vector with each stored key-
value pair

+ Idea: track “ancestor-descendant’ relationship
between different versions of data stored under the
same key k

33

Version vectors: Dynamo’s mechanism

* Rule: If vector clock comparison of v1 < v2, then the first is
an ancestor of the second — Dynamo can forget v1

+ Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

« Each time a get() occurs, Dynamo returns the V.V. for the
value(s) returned (in the “context”)

— Then users must supply that context to put()s that
modify the same key

34

Version vectors (auto-resolving case)

Version vectors (app-resolving case)

put handled
by node A

vl [(A,1)]

put handled
by node C

v2 [(A.]), (C,1)]

{ v2 > V1, so Dynamo nodes automatically drop v1, for v2 !

35

put handled
by node A

vl [(A,D]
put handled put handled
by node B by node C

v2 [(A,]), (B,1)] v3 [(A,1), (C,1)]

Client reads v2, v3; contex

\ V2 || v3, so a client must perform
t semantic reconciliation

[(A.1), (B.,D), (C,D)]
v4 [(A)2), (B.1), (C,1)]
Client reconciles v2 and v3; node A handles the put .

36




Trimming version vectors

+ Many nodes may process a series of put()s to same key
— Version vectors may get long — do they grow forever?

* No, there is a clock truncation scheme
— Dynamo stores time of modification with each V.V. entry

— When V.V. > 10 nodes long, V.V. drops the timestamp of
the node that least recently processed that key

37

Impact of deleting a VV entry?

put handled
by node A

vl [(A,1)]

put handled
by node C

V2 [AsH; (C.D)]

. V2 || v1, so looks like application resolution is required

38

Concurrent writes

» What if two clients concurrently write w/o failure?
— e.g. add different items to same cart at same time
— Each does get-modify-put
— They both see the same initial version
+ And they both send put() to same coordinator

+ Will coordinator create two versions with conflicting VVs?
— We want that outcome, otherwise one was thrown away

— Paper doesn't say, but coordinator could detect problem
via put() context

39

Removing threats to durability

* Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
» Compare the (k, v) pairs they hold
» Copy any missing keys the other has

How to compare and copy replica
state quickly and efficiently?

40

10



Efficient synchronization with Merkle trees

* Merkle trees hierarchically summarize the key-value
pairs a node holds

+ One Merkle tree for each virtual node key range
— Leaf node = hash of one key’s value
— Internal node = hash of concatenation of children

» Compare roots; if match, values match

— If they don’t match, compare children
* Iterate this process down the tree

M

Merkle tree reconciliation

+ B is missing orange key; A is missing green one

+ Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[0 2128) [0 2128

[0 2127: ;I.. [2127 2128) [0 2127: ; 52127 2128)

Finds differing keys quickly and with
minimum information exchange

42

How useful is it to vary N, R, W?
N|RWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

3 3 1 Slow reads, weak durability, fast writes

3 1 3 Slow writes, strong durability, fast reads

3 3 3 More likely that reads see all prior writes?
3 1 1 Read quorum doesn’t overlap write quorum

43

Dynamo: Take-away ideas

+ Consistent hashing broadly useful for replication—not only
in P2P systems

» Extreme emphasis on availability and low latency,
unusually, at the cost of some inconsistency

» Eventual consistency lets writes and reads return quickly,
even when partitions and failures

« Version vectors allow some conflicts to be resolved
automatically; others left to application

44

11



Wednesday topic:
Conflict resolution in
eventual consistency

Friday precept:
Topic TBA

12



