1 Overview

First, we’ll do a quick review of multiclass classification. Then, noting that we have moved into the realm of optimizing over matrices, we’ll introduce the concept of matrix norms.

2 Multiclass Review

In the setting of multiclass logistic regression, recall that we have a sample set $S$, which consists of $m$ samples $x_i \in \mathbb{R}^d$ and labels $y_i \in [1, \ldots, k]$, and we’d like to learn a matrix $W \in \mathbb{R}^{k \times d}$, whose row are the vectors $w_1, \ldots, w_k \in \mathbb{R}^d$, which predicts label probabilities

$$
\Pr[\text{label } y \mid x] = \frac{\exp(w_y^\top x)}{\sum_{j=1}^k \exp(w_j^\top x)}.
$$

Each $W$ specifies a model, and we’d like to find the one that maximizes likelihood of the data, which is just a product of this expression for each data point:

$$
\Pr[S \mid W] = \prod_{i=1}^m \Pr[y_i \mid x_i]
$$

It is convenient to consider maximizing the logarithm of this quantity, since the product becomes a sum:

$$
\log \Pr[S \mid W] = \sum_{i=1}^m \log \Pr[y_i \mid x_i]
$$
And since we’d like to be consistent with the framework of convex optimization, we’ll use the negative log-likelihood as our loss function:

\[
\ell(W) = -\log \Pr[S | W] = -\sum_{i=1}^{m} \log \left( \frac{\exp(w_{y_i}^T x_i)}{\sum_{j=1}^{k} \exp(w_j^T x_i)} \right)
\]

\[
= \sum_{i=1}^{m} \log \sum_{j=1}^{k} \exp(w_j^T x_i) - w_{y_i}^T x_i.
\]

This is a convex function that takes in a matrix \(W^{k \times d}\), and returns a real number. In order to run (stochastic) gradient descent, we need to compute the gradient, which is a matrix. This is not that scary. Of course, it will suffice to compute a single term \(\nabla \ell_i(W)\).

This is not that scary: it’s essentially the same derivation as in the case of two-class logistic regression. Let’s do it step-by-step:

First, consider the derivative of the log-sum-exp function:

\[
\frac{d}{dx} \log(e^x + C) = \frac{e^x}{e^x + C}.
\]

From this, we have

\[
\frac{\partial}{\partial u_i} \log \left( \sum_{j=1}^{k} e^{u_j} \right) = \frac{\partial}{\partial u_i} \log \left( e^{u_i} + \sum_{j \neq i} e^{u_j} \right) = \frac{e^{u_i}}{e^{u_i} + \sum_{j \neq i} e^{u_j}}.
\]

Thus, we have the gradient of the function \(L(u) : \mathbb{R}^k \rightarrow \mathbb{R}\) for which \(\ell_i(W) = L(Wx_i) - 1_{y_i}^T W x_i\). Specifically,

\[
L(u) = \log \left( 1^\top \exp(u) \right),
\]

and

\[
\nabla L(u) = \frac{1}{1^\top \exp(u)} \cdot \exp(u),
\]

where \(1\) is the all-ones vector, and \(\exp(\cdot)\) denotes the entrywise exponential.

Now, we are almost done. Compute the partial derivative with respect to each entry of \(W\):

\[
\frac{\partial}{\partial W_{j,c}} \ell_i(W) = \frac{\partial}{\partial W_{j,c}} (L(Wx_i) - [Wx_i]_{y_i})
\]

\[
= \left( [\nabla L(Wx_i)]_j - 1_{y_i=c} \right) \cdot [x_i]_c.
\]

Here, the indicator \(1_{y_i=c}\) is 1 when we are computing a partial derivative in row \(y_i\), and 0 otherwise.

We have sneakily proven the matrix chain rule in general, which gives us the gradient in a more concise form:

\[
\nabla [W \mapsto L(Wx_i)] = \nabla L(Wx_i) x_i^\top.
\]

From this, we can apply GD (sum each \(\nabla \ell_i\) at each iteration), or SGD (pick one).
3 Matrix Norms

When we considered binary classification or single-output regression, the parameters we
optimized over always took the form of a vector $w$. In class, we considered imposing a norm
constraint on this $w$; recall that we could solve this constrained optimization problem using
projected gradient descent.

3.1 Norms

So far, we’ve encountered the $\ell_p$ norm of a vector:

$$\|x\|_p = \left( \sum_{i=1}^{d} |x_i|^p \right)^{1/p}$$

which generalizes some simple notions of magnitude of a vector: Euclidean ($p = 2$), Man-
hattan ($p = 1$), and largest-magnitude entry ($p \to \infty$).

In general, a norm $\|\cdot\|$ is a function from a real vector space $V$ to the non-negative reals
$\mathbb{R}^+$ with the following properties:

- The zero vector has norm 0, and all others have positive norm.
- Homogeneity: $\|cx\| = |c| \cdot \|x\|$, $\forall x \in V$.
- Triangle inequality: $\|x + y\| \leq \|x\| + \|y\|$, $\forall x, y \in V$.

Note that by these properties, $\|x\|$ is always a convex function, and thus, the sublevel
sets $\{x : \|x\| \leq C\}$ are also convex. So, given a convex optimization problem we know how
to solve, we can add a constraint or regularization by any norm we like (as long as we can
calculate projections or gradients, respectively).

Some examples of norms:

- $\|x\| = 7\|x\|_1 + 4\|x\|_\infty$. In general, positive linear combinations of norms are norms.
- $\|x\| = \sqrt{x_1^2 + 2x_2^2 + 3x_3^2 + \ldots + dx_d^2}$; In general, any $x \mapsto \|Ax\|$ is a norm, where $A$ is
  an invertible matrix.

3.2 Matrix norms

This leads us to a natural question: what natural norms exist for a matrix $M \in \mathbb{R}^{m \times n}$?

A silly-sounding but valid answer: treat $M$ like an $mn$-dimensional vector; then any
vector norm of $M$ works. The $\ell_2$ version has a special name: the Frobenius norm, defined by

$$\|M\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij}^2}.$$
Here, the $\ell_\infty$ case is just the largest absolute value of an entry in the entire matrix. In these cases, projection onto the constraint set $\|M\| \leq C$ is just as easy as vector projection.

However, the interpretation of vectorizing a matrix is sometimes unclear, especially when the matrix in question describes a linear map (say, in regression).

### 3.3 The operator norm

A more natural class of norms is the *operator* norm. Intuitively, viewing $M$ as a linear transformation from $\mathbb{R}^n$ to $\mathbb{R}^m$, an operator norm asks: “what’s the largest factor by which $M$ can blow up the magnitude of a vector?” In a formula (letting all vector norms be Euclidean):

$$\|M\|_{\text{op}} := \sup_{v \in \mathbb{R}^n} \frac{\|Mv\|}{\|v\|} = \sup_{\|v\|=1} \|Mv\|.$$  

A nice property is that the operator norm is *submultiplicative*: that is, $\|AB\|_{\text{op}} \leq \|A\|_{\text{op}} \cdot \|B\|_{\text{op}}$ under matrix multiplication. Recall that a norm is only required to be *subadditive*.

It’s a little less clear how to compute this norm. Thankfully, we don’t have to do a brute-force search over all test vectors $v$. Recalling the *Rayleigh quotient* (sometimes known as *variational*) characterization of eigenvalues:

$$\|M\|_{\text{op}}^2 = \sup_{v \in \mathbb{R}^n} \frac{v^\top M^\top Mv}{v^\top v} = \lambda_{\text{max}}(M^\top M).$$

So, we can measure this norm by a maximum-eigenvalue computation. This is why the operator norm is sometimes also known as the *spectral* norm.

Unfortunately, projection and gradient are now more complicated matters. However, it can be verified that the Frobenius norm is always an upper bound for the operator norm.\footnote{One-line proof: $\|M\|_{F}^2 = \text{tr}(M^\top M) = \sum \lambda_i(M^\top M) \geq \max \lambda_i(M^\top M) = \|M\|_{\text{op}}^2$.}

So, this allows us to say that a Frobenius norm constraint also acts as an operator norm constraint; the latter is often more interpretable.

### 3.4 Subordinate norms: generalizing operator norms

In defining the operator norm, we sneakily made two arbitrary choices: that we measured the “blowup” in terms of the Euclidean norms of both $v$ and $Mv$. Indeed, we can obtain a whole family of operator norms, by varying the way we measure the size of each vector in defining the blowup factor. We usually consider different $\ell_p$ norms:

$$\|M\|_{p\rightarrow q} := \sup_{v \in \mathbb{R}^n} \frac{\|Mv\|_q}{\|v\|_p} = \sup_{\|v\|_p=1} \|Mv\|_q.$$  

So, the original definition of operator norm is recovered by setting $p = q = 2$.

Let’s see what happens when we set $p = 1, q = 2$. Then, take a moment to convince yourself that $\|Mv\|_{1\rightarrow 2}$ is simply the largest $\ell_2$ norm of any column of $M$. Such a constraint
is easier to check and enforce than the operator norm, and the gradient of this quantity is easy to compute.