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1. Online Learning.

You consult with n experts in order to make accurate predictions. You were told that the
best expert will make at most 1 mistake.

(i) Describe the possible values of the weight vectors that can be attained by the
Halving algorithm after T ≥ n rounds.

(ii) Construct a sequence of experts’ predictions and actual outcomes that force the
Consistent algorithm to make T mistakes for any T > 0. You may choose any n.

(iii) Recall that ∀T > 0 and i ∈ [n] the Weighted Majority algorithm is guaranteed to
make at most 2(1 + η)LT

i +
2 log(n)

η
mistakes where 0 < η ≤ 1

2 . Derive a mistake
bound for the setting of this question.

SOLUTION

(i) An expert’s weight is 1 if it hasn’t made any mistake in the T rounds, and it is 0
otherwise.

(ii) Choose n = T . Assuming the Consistent alogritm starts with the first expert (w1 =

1, and wi = 0 for 0 ≤ i ≤ n). The algorithm always predicts ŷt = 1 while the
outcome is always yt = −1. The algorithm makes a mistake at each round, and it
takes T rounds to prune all inconsistent expert. So the algorithm makes T mistakes
in T rounds.

(iii) We know that Li∗ = min1≤i≤n LT
i ≤ 1.

LT ≤ 2(1 + η)LT
i∗ +

2 log(n)
η

= 2LT
i∗ + 2(ηLT

i∗ +
log(n)
η

)

The tightes upperbound could have be achieved by η∗ =

√
log(n)

Li∗
(for non-zero Li∗).

However, we need to be careful whether wuch eta∗ lies in (0, 1/2].

1) if
√

log(n)
Li∗
≤ 1/2, (or Li∗ = 0)

LT ≤ 2LT
i∗ + 4

√
LT

i∗ log(n) ≤ 2 + 4
√

log(n)

2) if
√

log(n)
Li∗
≥ 1/2, (or Li∗ = 0)

LT ≤ 2LT
i∗ + 2(

1
2

LT
i∗ + 2 log(n)) ≤ 3 + 4

√
log(n)

Derive a mistake bound for the setting of this question.



2. Convex Analysis.

Consider the function f (x, y) = x4 + y4 on the domain

K = {(x, y) : −10 ≤ x ≤ 10,−10 ≤ y ≤ 10} .

(i) Prove or disprove: f is convex.
(ii) Prove or disprove: K is a convex set.

(iii) Compute the gradient of f . What is the smallest L such that f is L-Lipschitz?
(iv) Is f β-smooth for some β < ∞? If so, find the smallest such β.
(v) Is f α-strongly convex for some α > 0? If so, find the largest such α.

SOLUTION

(i) f is convex. A twice-differentiable function is convex if and only if its hessian is
positive semi-definite and its domain is convex. The convexity of f ’s domainK is
proved in (ii). Now we Check the hessian of f

∇2 f (x, y) =

12x2 0
0 12y2


Since x2 and y2 are non-negative on the domain K , the hessian is positive semi-
definite on K . Thus f is a convex function

(ii) K is a convex set. For any two points (x1, y1), (x2, y2) ∈ K and any 0 ≤ t ≤ 1, we
know that

−10 ≤ −10t − 10(1 − t) ≤ tx1 + (1 − t)x2 ≤ 10t + 10(1 − t) ≤ 10

−10 ≤ −10t − 10(1 − t) ≤ ty1 + (1 − t)y2 ≤ 10t + 10(1 − t) ≤ 10

indicating that t(x1, y1) + (1 − t)(x2, y2) ∈ K . Thus K is convex.
(iii) The gradient of f is

∇ f (x, y) =

4x3

4y3


L = max

(x,y)∈K
‖∇ f (x, y)‖2 = max

(x,y)∈K
4
√

x6 + y6 = 4
√

106 × 2 = 4000
√

2

(iv) Yes, For any (x, y) ∈ K

∇2 f (x, y) =

12x2 0
0 12y2

 � 12 × 102I

Thus the smallest β is 1200.



(v) No. Since at point (0, 0),

∇2 f (0, 0) =

0 0
0 0

 � 0I

there is no such α > 0.



3. PAC learning.

You need to build an apple selection machine, which measures an apple’s weight in grams
and the radius of the smallest enclosing sphere in millimeters. The weight of any apple
you’d encounter is between 100 and 600 grams, inclusive. The radius is between 200 and
1200 millimeters, inclusive. The measuring device does not have fractional units. A good
apple is designated as having a positive label, and a bad one as negative. You are requested
to find a classification rule of the form: “If the weight is measured to be ≥ a or the radius
is measured to be ≥ b, then the apple is good. Otherwise, it is considered bad.”

(i) Describe formally the hypothesis class you need to employ. How many different
predictors are in the class?

(ii) You were told that there exists a rule specified by (a?, b?) that would perfectly
classify all apples. What is the smallest number of examples you would need in
order to find a predictor which is correct on 95% of the apples? Your procedure
for finding such a classifier may completely fail with probability of at most 1%.

(? bonus) Can you still find a 95% accurate classifier if you were told instead that there exists
a classifier (a?, b?) with a 2% error rate? If yes, what is the number of examples
that will be required to find one with the same failure probability of 1%?

SOLUTION

(i)

H = {ha,b | ha,b(w, r) =

1, if w ≥ a and r ≥ b

−1, otherwise
, 100 ≤ a ≤ 600, 200 ≤ b ≤ 1200, a, b ∈ N}

|H| = 501 × 1001 = 501501

(ii) ε = 0.05, δ = 0.01,

m ≥
log(|H|) + log(1/δ)

ε
=

log(501501) + log(100)
0.05

(bonus) ε = 0.05 − 0.02 = 0.03, δ = 0.01, using agnostic PAC bound

m ≥
2 log(2|H|/δ)

ε2 =
2 log(2 × 501501 × 100)

0.032



.


