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1. ONLINE LEARNING.

You consult with n experts in order to make accurate predictions. You were told that the

best expert will make at most 1 mistake.

(i) Describe the possible values of the weight vectors that can be attained by the
Halving algorithm after 7 > n rounds.
(i1) Construct a sequence of experts’ predictions and actual outcomes that force the
Consistent algorithm to make 7" mistakes for any 7 > 0. You may choose any 7.
(i11) Recall that YT > 0 and i € [n] the Weighted Majority algorithm is guaranteed to
2log(n) 1

make at most 2(1 + n)L| + = mistakes where 0 < n < 7. Derive a mistake

bound for the setting of this question.

SOLUTION

(1) An expert’s weight is 1 if it hasn’t made any mistake in the 7 rounds, and it is O
otherwise.

(i) Choose n = T'. Assuming the Consistent alogritm starts with the first expert (w; =
I, and w; = 0 for 0 < i < n). The algorithm always predicts y, = 1 while the
outcome is always y, = —1. The algorithm makes a mistake at each round, and it

takes 7 rounds to prune all inconsistent expert. So the algorithm makes 7" mistakes

in 7 rounds.
(iii)) We know that L;, = min;<;, Ll.T <1.
21 1
L <201+ il + 28 oyt ort 4 1080,
The tightes upperbound could have be achieved by n* = lofﬂ (for non-zero L;,).

However, we need to be careful whether wuch eta* lies in (0, 1/2].
1) if &2 < 1/2, (or Li. = 0)

L" <2L! +4 Q/LZ.T* log(n) < 2 + 4+/log(n)
2) if \[*E > 1/2, (or L. = 0)

1
L"<2L] + 2(§Ll7; +21log(n)) < 3 + 4 +/log(n)

Derive a mistake bound for the setting of this question.



2. CONVEX ANALYSIS.

Consider the function f(x,y) = x* + y* on the domain
K={(xy):-10<x<10,-10<y < 10}.

(i) Prove or disprove: f is convex.

(ii) Prove or disprove: K is a convex set.
(iii)) Compute the gradient of f. What is the smallest L such that f is L-Lipschitz?
(iv) Is f B-smooth for some 8 < 00? If so, find the smallest such .

(v) Is f a-strongly convex for some a > 0? If so, find the largest such a.

SOLUTION

(i) f is convex. A twice-differentiable function is convex if and only if its hessian is
positive semi-definite and its domain is convex. The convexity of f’s domain K is

proved in (ii). Now we Check the hessian of f

12x> 0
0 12y°

V2 f(x,y) = [

Since x? and y* are non-negative on the domain %, the hessian is positive semi-
definite on K. Thus f is a convex function

(i) K is a convex set. For any two points (xy, 1), (x2,¥,) € Kandany 0 <t < 1, we
know that

—10<-10r=10(1 =) <tx; + (1 = H)x, <10 +10(1 — 1) < 10

10 < =106 = 10(1 = ) < tyl + (1 = £)y2 < 10t + 10(1 = £) < 10

indicating that #(xy, y;) + (1 — £)(x2, y2) € K. Thus K is convex.
(ii1) The gradient of f is

4 3
V(xy) = [ 4;2}

L= max |[Vf(x, )l = max 4+/x0 +y6 = 4 V106 x 2 = 4000 V2
(x. )€K (x)eK
(iv) Yes, For any (x,y) € K

122

<12x10%1
0 12y°

V2 f(x,y) = [

Thus the smallest 3 is 1200.



(v) No. Since at point (0, 0),

0 0
0 0

> 01

V2£(0,0) = [

there is no such a > 0.



3. PAC LEARNING.

You need to build an apple selection machine, which measures an apple’s weight in grams
and the radius of the smallest enclosing sphere in millimeters. The weight of any apple
you’d encounter is between 100 and 600 grams, inclusive. The radius is between 200 and
1200 millimeters, inclusive. The measuring device does not have fractional units. A good
apple is designated as having a positive label, and a bad one as negative. You are requested
to find a classification rule of the form: “If the weight is measured to be > a or the radius

is measured to be > b, then the apple is good. Otherwise, it is considered bad.”

(i) Describe formally the hypothesis class you need to employ. How many different
predictors are in the class?

(i1) You were told that there exists a rule specified by (a*, b*) that would perfectly
classify all apples. What is the smallest number of examples you would need in
order to find a predictor which is correct on 95% of the apples? Your procedure
for finding such a classifier may completely fail with probability of at most 1%.

(% bonus) Can you still find a 95% accurate classifier if you were told instead that there exists
a classifier (a*, b*) with a 2% error rate? If yes, what is the number of examples

that will be required to find one with the same failure probability of 1%?

SOLUTION
(i)

1,ifw>aandr>»b
H ={hap | hap(w,r) = ,100 < a <£600,200 < b <1200, a,b € N}

—1, otherwise
|H| = 501 x 1001 = 501501
(i) € =0.05,6 = 0.01,
s log(|H]) +log(1/6) _ 1og(501501) + log(100)

£ 0.05
(bonus) £ = 0.05 - 0.02 = 0.03,6 = 0.01, using agnostic PAC bound

_ 2log(2IH1/9) _ 2log(2 x 501501 x 100)
m =
= &2 0.032







