Recap + today

• last lecture:
 1. online decision making
 2. our first (serious) learning algorithm: weighted majority

• today: the power of randomness in learning
 1. randomization in decision making
 2. the Kelly criterion
Reminder: online learning

- Initialize w^1; $\mathcal{L}^1 = 0$

- For $t = 1, 2, \ldots, T, \ldots$
 1. Predict \hat{y}^t using w^t
 2. Observe true outcome y^t
 3. Endure loss: $\ell^t = \ell(y^t, \hat{y}^t)$; $\mathcal{L}^{t+1} = \mathcal{L}^t + \ell^t$
 4. Update $w^{t+1} := F(w^t, x^t, y^t)$
Reminder: Weighted Majority Algorithm

- Initialize $w^1 = 1$; $L^1 = 0$

- For $t = 1, 2, \ldots, T, \ldots$
 1. Observe predictions $x^t \in \{-1, +1\}^n$
 2. Predict $\hat{y}^t := \text{sign}(w^t \cdot x^t)$
 3. Observe true outcome y^t
 4. Endure loss: $\ell^t = 1[y^t \neq \hat{y}^t]$; $L^{t+1} = L^t + \ell^t$
 5. Update:

$$w_{j}^{t+1} = \begin{cases} w_j^t & x_j^t = y^t \\ (1 - \eta)w_j^t & x_j^t \neq y^t \end{cases}$$
Bag Of Words (BOW) model

- Pre-defined dictionary of n tokens (words, html, arch-codes)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>kale</td>
<td>1</td>
</tr>
<tr>
<td>plate</td>
<td>2</td>
</tr>
<tr>
<td>kohlrabi</td>
<td>3</td>
</tr>
<tr>
<td>ate</td>
<td>4</td>
</tr>
<tr>
<td>fork</td>
<td>5</td>
</tr>
</tbody>
</table>

- Represent a document as a vector $\mathbf{x} \in \{-1, +1\}^n$ s.t. $x_j = +1$ iff token j appears in document

- Tokens not in the dictionary are ignored

- Examples:

 "The kohlrabi ate kale on a plate" $\mapsto (+1, +1, +1, +1, -1)$

 "A monkey ate a banana with a fork" $\mapsto (-1, -1, -1, +1, +1)$
BOW + WM ⇒ Text Classifier

- Each dictionary word is an expert
- Initialize weight of experts $w^1 = 1$
- For $t = 1, \ldots, m$:
 - Convert document t to a vector $x^t \in \{-1, 1\}^n$
 - Update weights using WM with provided tagging y^t: $w^t \sim w^{t+1}$
- Output w^{m+1}

Wait, but what if $\not\exists$ single accurate expert?
Do we obtain a good classifier? Yes!
In many applications the vocabulary size n is much larger than length of each individual document.

Therefore x^i consists mostly of -1’s and few $+1$’s.

Most of the contribution to the weighted majority is due to words that do not appear in the document.

We can represent a document as a vector in $\{0, 1\}^n$.

- If word j appears in document then $x_j = 1$ o.w. $x_j = 0$
- Algorithmic advantage – represent x as a list of indices

However, $w \cdot x > 0$ since all weights and inputs are non-negative.

Introduce an *bias term* (indexed 0) which is always -1: $x \mapsto (-1, x)$

To be continued...
Reminder: guarantee

\[\mathcal{L}_i^T \] number of mistakes made by expert \(i \) during \(t = 1, \ldots, T \)
\[\mathcal{L}_w^T \] number of mistakes WM made during during \(t = 1, \ldots, T \)

Theorem: For every sequence \((x^1, y^1), \ldots, (x^T, y^T)\) the number of mistakes of WM is at most,

\[
\forall i \in [n] : \quad \mathcal{L}_w^T \leq 2(1 + \eta)\mathcal{L}_i^T + \frac{2\log(n)}{\eta}
\]

Theorem 2: any deterministic decision making algorithm has

\[
\mathcal{L}_w^T \geq 2 \min_i 2\mathcal{L}_i^T
\]

But can we still do better??
Randomized Weighted Majority

- Little and Warmuth derived randomized version of WM (RWM)
- RWM replaces the deterministic weighted majority rule with a randomized prediction:
 1. Define a distribution over experts
 \[p_i^t = \frac{w_i^t}{\sum_{j=1}^{n} w_j^t} \]
 2. Pick an expert \(i^t \) at random according to \(p^t \)
- How is this random choice implemented on a computer?
Randomized Weighted Majority

- Initialize $w^1 = 1$; $L^1 = 0$
- For $t = 1, 2, \ldots, T, \ldots$
 1. Observe predictions $x^t \in \{-1, +1\}^n$
 2. Form distribution $p^t_i = \frac{w^t_i}{\sum_{j=1}^{n} w^t_j}$
 3. Pick an index e with probability p^t_e and predict $\hat{y}^t := x^t_e$
 4. Observe true outcome y^t
 5. Endure loss: $\ell^t = 1[y^t \neq \hat{y}^t]$; $L^{t+1} = L^t + \ell^t$
 6. Update:
 $$w^{t+1}_j = \begin{cases} w^t_j & x^t_j = y^t \\ (1 - \eta)w^t_j & x^t_j \neq y^t \end{cases}$$
Randomized Weighted Majority

- The expected number of mistakes of RWM is bounded above,

\[\mathbb{E}[\mathcal{L}^T] \leq (1 + \eta) \mathcal{L}_{i^*}^T + \frac{\log(n)}{\eta} \]

- This bound is tight – any randomized prediction algorithm in the experts setting makes at least,

\[(1 + \eta) \mathcal{L}_{i^*}^T + \frac{\log(n)}{\eta} \]

mistakes for some \(\eta \in (0, \frac{1}{2}) \)
Proof

- Let i^* be the best expert in hindsight (the one who made the least number of mistakes).

- Let $\Phi^t = \sum_{i=1}^{n} w_i^t$.

- Let m_i^t be 1 if expert i made a mistake on round t and 0 o.w.

- Notice that $\mathcal{L}_i^T = \sum_{t=1}^{T} m_i^t$.

- Expected number of mistakes by RWM at time t is $p^t \cdot m^t = \sum_{i=1}^{n} p_i^t m_i^t$.

and overall expected #mistakes from 1 thru T is $\sum_{t=1}^{T} p^t \cdot m^t$.
Observation 1

\[
\Phi^T = \sum_{i=1}^{n} w_i^T \geq w_{i^*}^T = w_{i^*}^0 \times (1 - \eta) L_{i^*}^T = (1 - \eta) L_{i^*}^T
\]
Observation II

\[\Phi^T \leq \Phi^0 e^{-\eta \sum_{t=1}^{T} p^t \cdot m^t} \]

Proof outline:

- Expand \(\Phi^{t+1} \)

\[\Phi^{t+1} = \sum_{i=1}^{n} w_i^{t+1} = \sum_{i=1}^{n} w_i^t (1 - \eta m_i^t) \]

- Since \(p_i^t = \frac{w_i^t}{\Phi_t} \Rightarrow w_i^t = \Phi_t p_i^t \)

\[\Phi^{t+1} = \Phi^t - \eta \sum_i \Phi^t p_i^t m_i^t = \Phi^t (1 - \eta p^t \cdot m^t) \]

- Use \(1 - a \leq e^{-a} \)

\[\Phi^{t+1} \leq \Phi^t e^{-\eta p^t \cdot m^t} \]

- Use induction on \(t \) to get observation
Proof (cont.)

- Combining both observations:
 \[(1 - \eta)L_{i*}^T \leq \Phi^T \leq \Phi^0 e^{-\eta \mathbb{E}[\mathcal{L}^T]}\]

- Taking the logarithm:
 \[-\eta \mathbb{E}[\mathcal{L}^T] + \log(n) \geq L_{i*}^T \log(1 - \eta)\]

- From the Taylor approximation, for \(\eta < \frac{1}{2}\):
 \[-\eta - \eta^2 \leq \log(1 - \eta) \leq -\eta\]

- Plugging that back in:
 \[-\eta \mathbb{E}[\mathcal{L}^T] + \log(n) \geq L_{i*}^T (-\eta - \eta^2)\]

- Shifting sides and multiplying by \(\frac{1}{\eta}\):
 \[\mathbb{E}[\mathcal{L}^T] \leq \frac{\log(n)}{\eta} + (1 + \eta)L_{i*}^T\]
Randomized Weighted Majority

- The expected number of mistakes of RWM is bounded above:

\[
\mathbb{E}[\mathcal{L}^T] \leq (1 + \eta)\mathcal{L}_{i*}^T + \frac{\log(n)}{\eta}
\]

- How good is this bound?
Kelly criterion
Kelly criterion

- Horse race - how to bet on a favorable horse? (prior information tilt the odds in your favor)
- Two possible outcomes, both happen w.p. \(\frac{1}{2} \):
 - Loose everything
 - Make \(3 \times \) on your bet
- Bet of $1. Outcome after race:

\[
\text{reward} = \begin{cases}
0, & \text{w.p. } \frac{1}{2} \\
3, & \text{w.p. } \frac{1}{2}
\end{cases}
\]
- Given $100, how much would you bet?
Kelly criterion

- Repeated investing: wealth increases by factor of b with probability p such that $pb > 1$
- Given that we have 100 rounds of investing, what fraction of wealth to iteratively invest?
- $\mu^t = \text{wealth at time } t$; $\rho^t = \frac{\mu^t}{\mu^{t=1}}$
- $f \in [0, 1]$ fraction of wealth to bet on
- Expectation (one round):

$$\mathbb{E}[\rho^t] = (1 - p)(1 - f) + p [(1 - f) + fb]$$
$$= 1 + f(pb - 1) > 1$$

- Maximized at $f = 1$, why?
Kelly criterion

- After 100 rounds of investing...
- Expectation:

\[\mathbb{E}[\mu^{100}] = \mu^1 \mathbb{E}\left[\prod_{t=1}^{T} \rho^t\right] \]

\[= \mu^1 \prod_{t=1}^{100} \mathbb{E}[\rho^t] \quad \text{independence} \]

\[= \mu^1 (1 + f(bp - 1))^{100} \]

- So, how much would you bet?
Kelly criterion - simulation
Kelly criterion - simulation
Kelly criterion

• The Kelly Criterion – Maximize

\[\mathbb{E}[\log(\rho^t)] \]

• Results in:

\[f^* = \frac{pb - 1}{b - 1} \]

• Theorem: betting \(f^* \) results in more wealth than any other fractional-betting method with probability one, as number of rounds \(\to \infty \)!

• To be continued later in the course...
Summary

- The power of randomization in learning
- Randomized weighted majority
- Use in text classification
- Expectation vs. high probability, Kelly criterion
- Next week: statistical and computational learning theory.