Recap & Today

- Reminder of convexity, GD, and SGD

- Linear regression
 1. Problem definition
 2. Direct solution
 3. SGD for linear regression

- Binary classification
 1. Surrogate losses
 2. Sub-gradients
 3. Perceptron revisited
 4. SGD for binary classification

- Beyond binary learning problems
Convex Sets

Ω is convex set: \(\forall \mathbf{u}, \mathbf{v} \in \Omega, \text{ line segment between } \mathbf{u} \text{ and } \mathbf{v} \text{ is in } \Omega \)

\[\forall \alpha \in [0, 1] \quad \alpha \mathbf{u} + (1 - \alpha) \mathbf{v} \in \Omega \]
Convex Functions

Function $f : \Omega \to \mathbb{R}$ is convex if $\forall u, v \in C$ and $\alpha \in [0, 1]$,

$$f(\alpha u + (1 - \alpha)v) \leq \alpha f(u) + (1 - \alpha)f(v)$$
Tangents Lie Below f

Gradient of f at w: $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \ldots, \frac{\partial f(w)}{\partial w_d} \right)$

If f is convex and differentiable, then

$$\forall u, \quad f(u) \geq f(w) + \nabla f(w) \cdot (u - w)$$
Convex optimization,

\[
\min_{\mathbf{w} \in \Omega} f(\mathbf{w})
\]

where \(f \) is a convex function and \(\Omega \) is a convex set.

C.O. for Machine learning,

\[
f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}, (\mathbf{x}_i, y_i))
\]

where \(\ell() \) is a convex loss function in \(\mathbf{w} \) and assume \(\Omega = \mathbb{R}^d \).

Often abbreviate \(f_i(\mathbf{w}) \overset{\text{def}}{=} \ell(\mathbf{w}, (\mathbf{x}_i, y_i)) \) or \(\ell_i(\mathbf{w}) \overset{\text{def}}{=} \ell(\mathbf{w}, (\mathbf{x}_i, y_i)) \)
Gradient Descent

- Initialize w^1 (typically $w^1 = 0$)

- For $t = 1, \ldots, T$:
 - Set learning-rate η^t (often fixed)
 - Perform gradient descent step:
 \[
 w^{t+1} = w^t - \eta^t \nabla f(w^t) = w^t - \eta^t \frac{1}{|S|} \sum_{i \in S} \nabla f_i(w^t)
 \]

- Output $\bar{w}^T = \frac{1}{T} \sum_{t=1}^T w^t$
Gradient Descent - Properties

• Assume or constrain $\|\mathbf{w}\| \leq D/2$ therefore

$$\Rightarrow \|\mathbf{w}_t - \mathbf{w}^*\| \leq \|\mathbf{w}_t\| + \|\mathbf{w}^*\| \leq D$$

• Assume $\|\nabla f(\mathbf{w}^t)\| \leq G$

• Convergence rate of GD:

$$f(\mathbf{w}_T^T) - f(\mathbf{w}^*) \leq \frac{DG}{\sqrt{T}}$$

• However, each iteration requires $O(dm)$ operations
 [d – dimension, m – number of examples]
Iterates of Gradient Descent
Stochastic Gradient Descent

• Initialize \(\mathbf{w}^1 \) (typically \(\mathbf{w}^1 = \mathbf{0} \))

• For \(t = 1, \ldots, T \):

 • Set learning-rate \(\eta^t \) (typically decreasing)

 • Perform stochastic gradient descent step:

 • Choose \(S' \subset S \) at random

 • Update

 \[
 \mathbf{w}^{t+1} = \mathbf{w}^{t} - \eta^t \nabla \hat{f}(\mathbf{w}^{t})
 \]

 \[
 = \mathbf{w}^{t} - \eta^t \frac{1}{|S'|} \sum_{i \in S'} \nabla f_i(\mathbf{w}^{t})
 \]

• Output \(\bar{\mathbf{w}}^T = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^t \)
Stochastic Gradient Descent - Properties

• Assume that

\[\forall i : \| \nabla f_i(w^t) \| \leq G \]

in contrast to GD, \(\| \nabla f(w^t) \| \leq G \)

• Convergence rate of GD:

\[
\mathbb{E}[f(\bar{w}^T)] - f(w^*) \leq \frac{DG}{\sqrt{T}}
\]

• Each iteration requires \(O(dc) \) operations, \(c \) is sub-sample size
Iterates of SGD

\[
\begin{align*}
&\ast \quad f(w^t) \\
&\bullet \quad f \left(\frac{1}{t} \sum_{s \leq t} w^s \right)
\end{align*}
\]
Regression Problems

- Automatic Kelly Blue Book: value assessment of used cars
- Collect sale information of cars: sold for $$
- For each car gather model year, # accidents, make, mileage # of previous owners, last sold for $$\$, ...

<table>
<thead>
<tr>
<th>Year</th>
<th>Acci</th>
<th>Make</th>
<th>Mile</th>
<th>Ownr</th>
<th>Las$</th>
<th>Cur$</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>5</td>
<td>To</td>
<td>120</td>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Te</td>
<td>17</td>
<td>0</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Su</td>
<td>43</td>
<td>1</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_6</td>
<td>y</td>
</tr>
</tbody>
</table>

- How to represent symbolic features (Toyota, Tesla, Subaru) ?
- How to represent ordered sets (#accidents: 0 < 1 < 2 < ...) ?
- How to represent numeric features (v$, log(v$), log(v$) − b) ?
Linear Regression

- Each row is an example $\mathbf{x}_i \in \mathbb{R}^d$
- Last column is a target $y_i \in \mathbb{R}$
- Create $m \times d$ matrix s.t. $X_{i,j}$ is j’th entry of \mathbf{x}_i
- Create column vector \mathbf{y} from y_1, \ldots, y_n
- Find a solution for the linear set of equations $X\mathbf{w} = \mathbf{y}$
 - Solution may not exist
 - Multiple solutions may exist
 - Complexity $O(md + d^3)$
- Approximately solve, $X\mathbf{w} \approx \mathbf{y}$ namely $\forall i : \mathbf{w} \cdot \mathbf{x}_i \approx y_i$
- Notion of \approx ?
Regression Losses

- Convex loss $\ell : \mathbb{R} \rightarrow \mathbb{R}_+$; $\ell(z) = \ell(w \cdot x - y)$

- Example i induces convex loss
 \[\ell_i(w) = \ell(w \cdot x_i - y_i) \]

- Total loss:
 \[f(w) = \frac{1}{m} \sum_{i=1}^{m} \ell(w \cdot x_i - y_i) \]

- Concrete losses $\ell(z) = \ldots$
 \[z^2 \quad |z| \quad z^4 \quad \ldots \quad \min\{|z| - \gamma, 0\} \quad \exp(z) + \exp(-z) \]
Least Squares Regression $\ell(z) = \frac{1}{2}z^2$

- Parameters: radius D, learning rate η, number of iterations T
- Initialize: $w^1 = 0$
- For $t = 1, \ldots, T$:
 - Choose $S' \subset S$ and calculate stochastic gradient
 \[
 \nabla \hat{f}(w^t) = \frac{1}{|S'|} \sum_{i \in S'} \left(w^t \cdot x_i - y_i \right) x_i \defeq \Delta_i
 \]
 - Update
 \[
 w^{t+\frac{1}{2}} = w^t - \eta^t \nabla \hat{f}(w^t)
 \]
 \[
 w^{t+1} = \min \left \{ 1, \frac{D}{\|w^{t+\frac{1}{2}}\|} \right \} w^{t+\frac{1}{2}}
 \]
- Output $\bar{w}^T = \frac{1}{T} \sum_{t=1}^{T} w^t$
Pesky Learning Rate

- Recall that $\eta = \frac{D}{G\sqrt{T}}$ where

$$\| \nabla f(w^t) \| \leq G \quad \| w^t - w^* \| \leq D$$

- Assume or normalize such that $\forall i : \| x_i \| \leq b \quad | y_i | \leq c$

- Constrain $\forall t : \| w^t \| \leq D/2$

- We thus get: $\| w^t - w^* \| \leq \| w^t \| + \| w^* \| \leq D$

- In addition, we get a bound on gradients,

$$\| (w \cdot x_i - y_i)x_i \| \leq \| w \cdot x_i - y_i \| \| x_i \|$$

$$\leq |w \cdot x_i - y_i| b$$

$$\leq (|w \cdot x_i| + |y_i|) b$$

$$\leq (Db + c) b \quad \quad [\text{Cauchy–Schwarz}]$$

- And we can set $\eta = \frac{D}{(Db+c)b\sqrt{T}} \quad \ldots \quad \text{but in practice ...}$
Binary Classification

- Examples $x_i \in \mathbb{R}^d$

- Labels $y_i \in \{-1, +1\}$

- Predictor / classifier: $h_w(x) = \text{sign}(w \cdot x - b)$

- b is called a bias term (assume it is zero for time being)

- Goal,
 $$\min_w \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[\text{sign}(w \cdot x_i) \neq y_i]$$

- First attempt: define $z = y(w \cdot x)$ and $\ell^{0-1}(z) = \mathbb{1}[z \leq 0]$

- Can we use (stochastic) gradient descent?
Linear Classifiers

- Domain: Euclidean space $\mathbf{x} \in \mathcal{X} = \mathbb{R}^d$
- Hypothesis class: thresholding linear predictors

$$h_w(\mathbf{x}) = \text{sign} (\mathbf{w} \cdot \mathbf{x} - b)$$
0-1 Loss

“Utopia”: combinatorial problem which is NP-Hard
Classification Margin

\[y(w \cdot x) > 0 \]

\[y(w \cdot x) < 0 \]
Surrogate Losses for Classification

- **Convex** losses w.r.t $z = y(w \cdot x)$ which satisfy
 \[\ell(z) \geq \ell^0(z) \]
 \[\ell^0(z) = \begin{cases} 0 & \text{if } z \geq 0 \\ 1 & \text{if } z < 0 \end{cases} \]

- Exp-loss,
 \[\exp(-z) \]

- Log-loss,
 \[\log(1 + \exp(-z)) \]

- Hinge-loss,
 \[\max\{0, 1 - z\} = [1 - z]^+ \]

- Squared-error with $\Delta = w \cdot x - y$,
 \[\ell(\Delta) = \Delta^2 = (w \cdot x - y)^2 \]
 \[= y^2(w \cdot x - y)^2 \]
 \[= (y(w \cdot x) - 1)^2 \Rightarrow \ell(z) = (1 - z)^2 \]
Sub-gradients

- **v** is sub-gradient of \(f \) at \(w \) if \(\forall u, \ f(u) \geq f(w) + v \cdot (u - w) \)
- The differential set, \(\partial f(w) \), is the set of sub-gradients of \(f \) at \(w \)
- Lemma: \(f \) is convex iff for every \(w \), \(\partial f(w) \neq \emptyset \)
Optimality Property

\(f \) is “locally flat” around \(w \), i.e. \(0 \) is a sub-gradient, iff
\[w \text{ is a (not “the”) global minimizer} \]

We can replace gradients with sub-gradients:
\[
\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \mathbf{g}^t \quad \text{where} \quad \mathbf{g}^t \in \partial \hat{f}(\mathbf{w}^t)
\]
Hinge Loss

\[\ell(z) = \max\{0, 1 - z\} = [1 - z]_+ \]

\[\ell_{\text{hinge}}(w, (x, y)) \overset{\text{def}}{=} \max\{0, 1 - y(w \cdot x)\} \]

Non-differentiable at \(z = 1 \)

Can we use SGD?
SGD for Hinge-Loss

- Fully stochastic case – single example

- Subgradient of \([1 - z]_+\),

\[
\partial \ell(z) = \begin{cases}
0 & z > 1 \\
-1 & z < 1 \\
(-1, 0) & z = 1
\end{cases}
\]

\[
\partial \ell(w, (x, y)) = yx \partial \ell(z) \quad \text{where} \quad z = y(w \cdot x)
\]

- SGD update on iteration \(t\):

\[
w^{t+1} = w^t - \eta g^t \quad \text{where} \quad g^t \in \partial \ell_t(w^t)
\]

\[
w^{t+1} = \begin{cases}
w^t + \eta y^t x^t & y^t(w^t \cdot x^t) \leq 1 \\
w^t & \text{otherwise}
\end{cases}
\]
SGD vs. Perceptron

• SGD

\[w^{t+1} = \begin{cases}
 w^t + \eta y^t x^t & y^t(w^t \cdot x^t) \leq 1 \\
 w^t & \text{otherwise}
\end{cases} \]

• Perceptron

\[w^{t+1} = \begin{cases}
 w^t + \eta y^t x^t & y^t(w^t \cdot x^t) \leq 0 \\
 w^t & \text{otherwise}
\end{cases} \]
SGD ≈ Perceptron

- Analysis of SGD assumes,
 \[\| \nabla \ell_t(w^t) \| \leq G \quad \| w^t - w^* \| \leq D \]

- Analysis of GD & SGD’s implies,
 \[\sum_{t=1}^{T} [1 - y_t(w^t \cdot x_t)]_+ \leq \sum_{t=1}^{T} [1 - y_t(w^* \cdot x_t)]_+ + \sqrt{T} GD \]

- Analysis of Perceptron assumes,
 \[\forall i : \| x_i \| \leq 1 \quad \exists w^* : \| w^* \| = 1 \land y_i(w^* \cdot x_i) \geq \gamma \]

- Perceptron’s mistake bound is,
 \[\frac{1}{\gamma^2} \Rightarrow \sum_{t=1}^{T} 1[y_t(w^t \cdot x_t) \leq 0] \leq \frac{1}{\gamma^2} \]
SGD ⇒ Perceptron

• Need to accommodate Perceptron’s assumptions,

\[\forall i : \|x_i\| \leq 1 \ \exists w^* : \|w^*\| = 1 \land y_i(w^* \cdot x_i) \geq \gamma \]

• Constraining (by projecting) \(\|w^t\| \leq 1\) imply

\[w^t \cdot x_i \leq \|w^t\| \|x_i\| \leq 1 \]

• Modify loss to be \([\gamma - y(w \cdot x)]_+\]

• We start at \(w^1 = 0\) & progress toward \(w^*\) thus

\[\|w^t - w^*\| \leq 1 \]

• Since \(\forall t : \|w^t\| \leq 1 \land \|x_i\| \leq 1\) then

\[G \leq 1 \quad D \leq 1 \]
SGD \Rightarrow Perceptron

- “Ignore” rounds t such that $0 < y_t(w^t \cdot x^t) \leq \gamma$

- Loss bound becomes,

$$
\gamma \sum_{t=1}^{T} 1[y_t(w^t \cdot x_t) \leq 0] \leq \sum_{t=1}^{T} [\gamma - y_t(w^t \cdot x_t)]^+ \\
\leq \sum_{t=1}^{T} [\gamma - y_t(w^* \cdot x_t)]^+ + \sqrt{T}
$$

- If we saw only mistake-prone examples $\Rightarrow T = \#\text{mistakes}$

$$
\gamma T \leq \sqrt{T} \quad \Rightarrow \quad T \leq \frac{1}{\gamma^2}
$$

- SGD updates w^t on rounds when $y_t(w^t \cdot x^t)$ is small and is thus called the aggressive Perceptron
Logistic Regression

- Define the following estimate,

\[P[Y = +1|\mathbf{x}, \mathbf{w}] \overset{\text{def}}{=} \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})} \]

- We can write,

\[P[Y = -1|\mathbf{x}, \mathbf{w}] = 1 - \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})} = \frac{1}{1 + \exp(\mathbf{w} \cdot \mathbf{x})} \]

- Putting the two outcomes together we get,

\[P[Y = y|\mathbf{x}, \mathbf{w}] \overset{\text{def}}{=} \frac{1}{1 + \exp(-y(\mathbf{w} \cdot \mathbf{x}))} \]
Logistic Regression

• Loss of wrong prediction,

\[- \log (\mathbb{P} [Y = -y_i | \mathbf{w}, \mathbf{x}_i]) = - \log \left(1 + e^{-y_i (\mathbf{w} \cdot \mathbf{x}_i)} \right)\]

• SGD iterate for sub-sample S'

$$\forall i \in S' : \quad p_i = \frac{1}{1 + \exp(y_i (\mathbf{w}^t \cdot \mathbf{x}_i))}$$

$$\mathbf{g}^t = - \sum_{i \in S'} p_i y_i \mathbf{x}_i$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta^t \mathbf{g}^t = \mathbf{w}^t + \eta^t \sum_{i \in S'} p_i y_i \mathbf{x}_i$$