
Introduction to Machine Learning - COS 324

Homework Assignment 7 Solutions

I. Compute the entropy of the following distributions:

(i) The distribution on integers from one to n ≥ 2, where i has probability pro-

portional to 2−i (scaled such that all probabilities sum up to one). Stated

equivalently, for this distribution it holds that

Pr[i]
Pr[i + 1]

= 2

Solution: The probability of i is Pr[i] = 2−i∑n
j=1 2− j = 2−i

1−2−n (i = 1, . . . , n). There-

fore the entropy of this distribution is

Entropy = −

n∑
i=1

Pr[i] log2 Pr[i] = −

n∑
i=1

2−i

1 − 2−n log2
2−i

1 − 2−n

=
1

1 − 2−n

n∑
i=1

2−i (i + log2(1 − 2−n)
)

=
1

1 − 2−n

n∑
i=1

2−i (i + log2(1 − 2−n)
)

=
1

1 − 2−n

n∑
i=1

2−ii +
log2(1 − 2−n)

1 − 2−n

n∑
i=1

2−i

=
1

1 − 2−n

n∑
i=1

2−ii +
log2(1 − 2−n)

1 − 2−n (1 − 2−n)

=
1

1 − 2−n S + log2(1 − 2−n),

where

(1) S =

n∑
i=1

2−ii.

Note that

(2) 2S =

n∑
i=1

2−(i−1)i =

n−1∑
i=0

2−i(i + 1).
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Subtracting (2) by (1), we get

S = 2−0(0 + 1) +

n−1∑
i=1

2−i − 2−nn = 2 − 2−(n−1) − 2−nn.

Therefore Entropy = 1
1−2−n (2 − 2−(n−1) − 2−nn) + log2(1 − 2−n) = 2 − n

2n−1 +

log2(1 − 2−n).

(ii) The uniform distribution on all binary strings of length n, with exactly k ones.

Solution: This is a uniform distribution over
(

n
k

)
elements. Its entropy is

−
(n

k)∑
i=1

1
(n

k)
log2

1
(n

k)
= −

(
n
k

)
1

(n
k)

log2
1

(n
k)

= log2

(
n
k

)
.

II. In this exercise we show that entropy is a lower bound on lossless compression.

Suppose files are sequences of m bits, of which m · p are 1 and m · (1 − p) are 0.

Here p ∈ (0, 1) is some fraction.

(i) Give an expression for the total number of distinct files.

Answer:
(

m
mp

)
.

(ii) Let N be the number computed in the previous part. Show that

lim
m→∞

1
m

log N = H(Xp),

where Xp is a Bernoulli random variable with parameter p.

You may use Stirling’s approximation:

n! ≈
√

2πn
(n
e

)n
.

Proof: Using Stirling’s approximation:

lim
m→∞

1
m

log N = lim
m→∞

1
m

log
(

m
mp

)
= lim

m→∞

1
m

log
m!

(mp)!(m(1 − p))!

= lim
m→∞

1
m

log

√
2πm

(
m
e

)m

√
2πmp

(
mp
e

)mp √
2πm(1 − p)

(
m(1−p)

e

)m(1−p)

= lim
m→∞

1
m

log
1√

2πmp(1 − p)pmp(1 − p)m(1−p)

= − lim
m→∞

log
√

2πmp(1 − p) + mp log p + m(1 − p) log(1 − p)
m
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= − lim
m→∞

 log
√

2πmp(1 − p)
m

+ p log p + (1 − p) log(1 − p)


= p log p + (1 − p) log(1 − p) = H(Xp). �

(iii) Imagine a file compression algorithm that, given any file of length m, com-

presses it to m̃ bits. Show that if m̃ < m · (H(Xp) − ε) for some ε > 0, then

it must necessarily be a lossy compression; meaning that two different files

must correspond to the same compressed file.

Proof: There are 2m̃ files of length m̃. It suffices to show 2m̃ < N =
(

m
mp

)
for

sufficiently large m. We have

2m̃ < N =

(
m

mp

)
⇐⇒ m̃ < log N ⇐= m(H(Xp) − ε) < log N

⇐⇒ H(Xp) − ε <
1
m

log N.

The last inequality holds for sufficiently large m because the RHS has limit

H(Xp) when m→ ∞. �

III. Let ε, δ > 0 be two given parameters. Using the fundamental theorem of statistical

learning, compute an upper bound on the number of examples needed to learn a

binary decision tree with k nodes over n variables, that will attain generalization

error at most ε with probability 1 − δ.

Solution: The number of decision trees with k nodes over n variables is at most

nk(2k + 1)!. (See lecture notes 13.) Thus the sample complexity (in the realizable

setting) is O
(

log(nk(2k+1)!)/δ)
ε

)
= O

(
k log n+k log k+log δ−1

ε

)
.


