Introduction to Machine Learning - COS 324

Homework Assignment 7 Solutions

I. Compute the entropy of the following distributions:
(1) The distribution on integers from one to n > 2, where i has probability pro-
portional to 27 (scaled such that all probabilities sum up to one). Stated
equivalently, for this distribution it holds that
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Solution: The probability of i is Pr[i] = ,—2, = 12;,, (i=1,...,n). There-

fore the entropy of this distribution is
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Subtracting (2) by (1), we get
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Therefore Entropy = —=(2 = 27D = 27"n) + log,(1 —27") = 2 — 52 +
log,(1 —27").

(i1) The uniform distribution on all binary strings of length n, with exactly k ones.

Solution: This is a uniform distribution over (Z) elements. Its entropy is
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II. In this exercise we show that entropy is a lower bound on lossless compression.
Suppose files are sequences of m bits, of whichm - p are 1 and m - (1 — p) are 0.
Here p € (0, 1) is some fraction.
(i) Give an expression for the total number of distinct files.

Answer: (H’ZD)

(i1) Let N be the number computed in the previous part. Show that
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where X, is a Bernoulli random variable with parameter p.

You may use Stirling’s approximation:
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Proof: Using Stirling’s approximation:
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(ii1) Imagine a file compression algorithm that, given any file of length m, com-
presses it to 72 bits. Show that if /i < m - (H(X),) — &) for some & > 0, then
it must necessarily be a lossy compression; meaning that two different files
must correspond to the same compressed file.

Proof: There are 2™ files of length 7. It suffices to show 2™ < N = (mmp) for
sufficiently large m. We have
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The last inequality holds for sufficiently large m because the RHS has limit

H(X,) when m — oo. |

III. Lete, 6 > 0 be two given parameters. Using the fundamental theorem of statistical
learning, compute an upper bound on the number of examples needed to learn a
binary decision tree with k£ nodes over n variables, that will attain generalization
error at most € with probability 1 — 6.

Solution: The number of decision trees with k nodes over n variables is at most

n*(2k + 1)!. (See lecture notes 13.) Thus the sample complexity (in the realizable
log(n*(2k+1))/6) \ _ - ( klogn+klog k+log 6~
)_0( )
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