
Introduction to Machine Learning - COS 324

Homework Assignment 4 Solutions

I For this exercise we restrict ourselves to one dimensional functions, d = 1. Prove

the equivalence of the two definitions of convexity shown in class. That is, we

defined that f : K 7→ Rd is convex if and only if f ((1−α)x+αy) ≤ (1−α) f (x)+α f (y)

for all x, y ∈ K and α ∈ [0, 1]. Show that f (assuming it is differentiable) is convex

if and only if

f (x) ≥ f (y) + f ′(y)(x − y)

Proof: We wish to prove that convexity ⇐⇒ ∀x, y f (x) ≥ f (y) + f ′(y)(x − y)

=⇒ Consider points x, y ∈ K, x > y and α ∈ (0, 1), we know f ((1−α)y+αx) ≤

(1−α) f (y)+α f (x). Rearranging terms, f (y+α(x−y)) ≤ f (y)+α( f (x)− f (y)).

Rearranging again and using α > 0 and x > y,

f (y + α(x − y)) − f (y) ≤ α( f (x) − f (y))

f (y + α(x − y)) − f (y)
α(x − y)

≤
f (x) − f (y)

x − y

Note that lim
h→0

f (y+h)− f (y)
h = f ′(y), so lim

α→0

f (y+α(x−y))− f (y)
α(x−y) = f ′(y). Setting α → 0

in the above equation and using the fact that if every element of a sequence

is lower bounded by a quantity, then the limit of the sequence is also lower

bounded by that quantity, we get that f (x)− f (y)
x−y ≥ f ′(y). A similar proof works

for the x < y case. Since x and y were arbitrarily chosen, this true for x, y ∈ K

⇐= Consider x, y ∈ K, α ∈ [0, 1]. Define zα = αx + (1 − α)y. We know

f (a) ≥ f (b) + f ′(b)(a − b),∀a, b ∈ K. We use this inequality for a = x, b = zα

and a = y, b = zα. We get the following two inequalities

f (x) ≥ f (zα) + f ′(zα)(x − zα)

f (y) ≥ f (zα) + f ′(zα)(y − zα)
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Multiplying the first equation by α and second by (1 − α) and adding the two,

we get

α f (x) + (1 − α) f (y) ≥ α f (zα) + (1 − α) f (zα) + f ′(zα)(αx + (1 − α)y − zα)

which gives us f (zα) = f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) as desired.

II Prove:

(a) The sum of convex functions is convex.

Proof: Let f and g be two convex functions and let h = f + g. We know that

∀x, y, α ∈ [0, 1], f (αx + (1−α)y) ≤ α f (x) + (1−α) f (y) and g(αx + (1−α)y) ≤

αg(x) + (1 − α)g(y). Adding these equations we get

f (αx + (1 − α)y) + g(αx + (1 − α)) ≤ α( f (x) + g(x)) + (1 − α)( f (y) + g(y))

h(αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y)

So h = f + g is also convex

(b) Let f be α1-strongly convex and g be α2-strongly convex. Then f + g is

(α1 + α2)-strongly convex.

Proof: We first prove a simple statement about psd matrices which we will

use in parts (b) and (c).

Lemma: Sum of psd matrices is a psd matrix. Proof: If A < 0 and B < 0,

xT Ax ≥ 0 and xT Bx ≥ 0,∀x. If C = A + B, the xTCx = xT (A + B)x =

xT Ax + xT Bx ≥ 0. So C is also psd.

Since, f is α1-strongly convex, ∇2 f (x) < α1I =⇒ ∇2 f (x) − α1I < 0,∀x.

Similarly ∇2g(x) − α2I < 0. Using the above lemma, we conclude that

∇2 f (x) − α1I + ∇2g(x) − α2I < 0

So

∇2( f + g)(x) − (α1 + α2)I < 0,∀x
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So f + g is α1 + α2-strongly convex.

(c) Let f be β1-smooth and g be β2-smooth. Then f + g is (β1 + β2)-smooth.

Proof: The proof is very similar to part (b). Using the definition of smooth

functions, we know β1I − ∇2 f (x) < 0 and β2I − ∇2g(x) < 0 for every x.

Adding these equations, we get (β1 + β2)I − ∇2( f + g)(x) < 0,∀x. So f + g is

β1 + β2-smooth function.


