Introduction to Machine Learning - COS 324

Homework Assignment 4 Solutions

I For this exercise we restrict ourselves to one dimensional functions, d = 1. Prove
the equivalence of the two definitions of convexity shown in class. That is, we
defined that f : K — R¢1is convex if and only if f((1—a)x+ay) < (1-a)f(x)+af(y)
for all x,y € K and a € [0, 1]. Show that f (assuming it is differentiable) is convex

if and only if
J&) 2 fO) + fx =)

Proof: We wish to prove that convexity &= Vx,yf(x) > f(y) + f/()(x —y)
— Consider points x,y € K, x > yand a € (0, 1), we know f((1-a)y+ax) <
(1-a)f(y)+af(x). Rearranging terms, f(y+a(x—y)) < f(y)+a(f(x)— f(y)).

Rearranging again and using @ > 0 and x > y,

JO+alx=y) = fO) < a(f(x) = f()

fO+alx-y) - fO) _ f&) - fO)
a(x—y) T x-y

Note that lim L2270 = ¢/(y), 50 lim L2400 = f7(y) - Setting @ — 0
h—0 a—0 @(x=y)

in the above equation and using the fact that if every element of a sequence

is lower bounded by a quantity, then the limit of the sequence is also lower

bounded by that quantity, we get that %ﬁ” > f’(y). A similar proof works

for the x < y case. Since x and y were arbitrarily chosen, this true for x,y € K

&= Consider x,y € K,a € [0,1]. Define z, = ax + (1 — a)y. We know
f(a) = f(b) + f'(b)(a — b),Ya,b € K. We use this inequality fora = x,b = z,

and a =y, b = z,. We get the following two inequalities

f(x) 2 f(Za) + f/(Za)(x - Za)

fO) 2 f(za) + /)Y — 2a)
1



Multiplying the first equation by « and second by (1 — @) and adding the two,

we get

af(0)+ (1 -a)f() 2 af(z) + (1 - ) f(za) + [z ax + (1 - a)y - 2,)

which gives us f(z,) = f(ax + (1 — @)y) < af(x) + (1 — @) f(y) as desired.

IT Prove:

(a) The sum of convex functions is convex.
Proof: Let f and g be two convex functions and let 7 = f + g. We know that
Vx,y,a €[0,1], flax+ (1 —a)y) <af(x)+ (1 —a)f(y) and glax+ (1 —a)y) <
ag(x) + (1 — a)g(y). Adding these equations we get

flax+ (1 = a)y) + glax + (1 - a)) < a(f(x) + g(x)) + (1 = a)(f () +&(»)

h(ax + (1 — a@)y) < ah(x) + (1 — a)h(y)

So h = f + g is also convex

(b) Let f be a;-strongly convex and g be a,-strongly convex. Then f + g is
(a1 + ay)-strongly convex.
Proof: We first prove a simple statement about psd matrices which we will

use in parts (b) and (c).

Lemma: Sum of psd matrices is a psd matrix. Proof: If A > 0 and B > 0,

xTAx > 0and x’Bx > 0,¥x. If C = A + B, the x'Cx = x"(A + B)x =

xTAx + x"Bx > 0. So C is also psd.
Since, f is a;-strongly convex, V2f(x) » a;l = V’*f(x) - a;l > 0,Yx.
Similarly V2g(x) — a»I > 0. Using the above lemma, we conclude that

V2 f(x) — a1l + Vg(x) —asl > 0

So
V2(f + g)(x) — (a1 + ax)] > 0,Vx



So f + g is a; + a,-strongly convex.

(c) Let f be B;-smooth and g be 3,-smooth. Then f + g is (8; + 5,)-smooth.
Proof: The proof is very similar to part (b). Using the definition of smooth
functions, we know 3,1 — V2f(x) > 0 and $,I — V?g(x) > 0 for every x.
Adding these equations, we get (8; + 82)I — V2(f + g)(x) > 0,¥Yx. So f + g is

B1 + B2-smooth function.



