Introduction to Machine Learning - COS 324

Written Homework Assignment 4

Due date: The minute after 11:59pm of one week from announcement in class.

Electronic submissions only.

Note:

• Consulting with other students from this course is allowed. If you do so, clearly state whom you consulted with for each problem separately.
• Searching the internet or literature for solutions is prohibited.

I For this exercise we restrict ourselves to one dimensional functions, \(d = 1 \). Prove the equivalence of the two definitions of convexity shown in class. That is, we defined that \(f : K \mapsto \mathbb{R}^d \) is convex if and only if \(f((1-\alpha)x+\alpha y) \leq (1-\alpha)f(x)+\alpha f(y) \) for all \(x, y \in K \) and \(\alpha \in [0, 1] \). Show that \(f \) (assuming it is differentiable) is convex if and only if

\[
f(x) \geq f(y) + f'(y)(x - y)
\]

II Prove:

(a) The sum of convex functions is convex.
(b) Let \(f \) be \(\alpha_1 \)-strongly convex and \(g \) be \(\alpha_2 \)-strongly convex. Then \(f + g \) is \((\alpha_1 + \alpha_2) \)-strongly convex.
(c) Let \(f \) be \(\beta_1 \)-smooth and \(g \) be \(\beta_2 \)-smooth. Then \(f + g \) is \((\beta_1 + \beta_2) \)-smooth.

III BONUS Let \(f(x) : \mathbb{R}^d \mapsto \mathbb{R} \) be a convex differentiable function and \(\mathcal{K} \subseteq \mathbb{R}^d \) be a convex set. Prove that \(x^* \in \mathcal{K} \) is a minimizer of \(f \) over \(\mathcal{K} \) if and only if for any \(y \in K \) it holds that \((y - x^*)^T \nabla f(x^*) \geq 0 \).