Introduction to Machine Learning - COS 324

Written Homework Assignment 4

Due date: The minute after 11:59pm of one week from announcement in class. Electronic submissions only.

Note:

- Consulting with other students from this course is allowed. If you do so, clearly state whom you consulted with for each problem separately.
- Searching the internet or literature for solutions is **prohibited**.

I For this exercise we restrict ourselves to one dimensional functions, d = 1. Prove the equivalence of the two definitions of convexity shown in class. That is, we defined that $f : K \mapsto \mathbb{R}^d$ is convex if and only if $f((1-\alpha)x+\alpha y) \le (1-\alpha)f(x)+\alpha f(y)$ for all $x, y \in K$ and $\alpha \in [0, 1]$. Show that f (assuming it is differentiable) is convex if and only if

$$f(x) \ge f(y) + f'(y)(x - y)$$

II Prove:

- (a) The sum of convex functions is convex.
- (b) Let f be α_1 -strongly convex and g be α_2 -strongly convex. Then f + g is $(\alpha_1 + \alpha_2)$ -strongly convex.
- (c) Let f be β_1 -smooth and g be β_2 -smooth. Then f + g is $(\beta_1 + \beta_2)$ -smooth.
- III **BONUS** Let $f(x) : \mathbb{R}^d \mapsto \mathbb{R}$ be a convex differentiable function and $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set. Prove that $x^* \in \mathcal{K}$ is a minimizer of f over \mathcal{K} if and only if for any $y \in K$ it holds that $(y x^*)^\top \nabla f(x^*) \ge 0$.