
Introduction to Machine Learning - COS 324

Homework Assignment 3 Solutions

1. State and re-prove the fundamental theorem for PAC learnability for finite hypothesis
classes which we learned and proved in class. Explain and justify each transition in the
proof from elementary facts in probability theory and combinatorics. You are welcome
to use the handouts.

Solution:

Please refer to slides 8-11 in lect5.pdf for notations. HB is the set of hypothesis which
have error greater than ε on the distribution, i.e. HB = {h ∈ H : LD(h) > ε}. We wish
to show that the probability of picking a set S of m points for which ERM returns a
bad hypothesis is less than δ. The following are the crucial steps in the proof:

(a) {S : LD(ERM(S,H)) > ε} ⊆M = {S : ∃h ∈ HB,LS(h) = 0}.
Proof: hS := ERM(S,H) satisfies LS(hS) = minh∈H LS(h) = 0, since this is the
realizable setting. So for a set S, the event LD(hS) = LD(ERM(S,H)) > ε is the
same as saying hS ∈ HB which implies ∃h ∈ HB,LS(h) = 0.

(b) Bounding probability using Union bound

D({S : LD(ERM(S,H)) > ε}) = D({S : ∃h ∈ HB,LS(h) = 0})
= D(∪h∈HB

{S : LS(h) = 0})

≤
∑
h∈HB

D({S : LS(h) = 0})

(c) For h ∈ HB, D({S : LS(h) = 0}) = (1− LD(h))m

Proof: Observe that 1 − LD(h) is simply the probability that h labels a point
sampled randomly from the distribution D correctly. The m points in S are
sampled independently from the distribution D. Using the fact the probability of
independent events is the product of probabilities of the events, we get that the
probability that h labels all m points correctly is (1− LD(h))m.

(d) Combining (c) and (d), we get D({S : LD(ERM(S,H)) > ε}) ≤ |HB|(1 −
LD(h))m ≤ |H|(1 − LD(h))m. Choosing m > log |H|/δ

ε
will make this quantity

less than δ

2. Consider the following dataset:

1

x1 x2 x3 x4 x5 x6 x7 x8 y
1 1 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 1 0
0 1 1 0 1 1 0 1 1
1 1 0 1 0 1 0 1 1
0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 1 0

In this formulation, there are eight attributes (or features or dimensions), x1, . . . , x8,
each taking the values 0 or 1. The label (or class) is given in the last column denoted
y and also takes the values 0 or 1. Notice that the label y is 1 if and only if x2 and
x6 are both equal to 1. Since attributes and labels are {0, 1}-valued, we can write this
rule succinctly as y = x2x6. In general, such a product of any number of attributes is
called a monomial. (This includes the “empty” monomial, which, being a product of
no variables, is always equal to 1.)

Throughout the question, you may assume that the attributes and labels are all {0, 1}-
valued. Also, let n be the number of attributes. Let m be the number of examples.
For instance, n = 8 and m = 9 in the table above. Assume, as usual, that training
and test examples are generated independently at random according to some unknown
distribution.

(a) What is the total number of monomials that can be defined on n attributes?
Answer: 2n. Observe that there is a bijection between monomials and subsets
of the set {1, . . . , n}. In other words, every subset of {1, . . . , n} corresponds to
exactly one monomial.

(b) Describe a simple algorithm that, given a dataset, efficiently (in time which is
polynomial in n and m) finds a consistent monomial, assuming that one exists.
Algorithm For any data point, the set of ”on” variables is the set of all variables
which are 1. Take the intersection of ”on” variables for every data point with
y = 1. A consistent monomial is the product of all these variables (lets call this
mS).
Proof of consistency: Clearly by construction mS is consistent on all data points
with y = 1. Any other consistent monomial m′ can not have more variables than
mS, otherwise it won’t be consistent on y = 1 points. So the value of monomial
m′ will be greater than the value of mS. So if mS is not consistent on y = 0
points, then m′ can not be consistent on these points as well, which contradicts
the realizable setting.

(c) Suppose you applied your algorithm to the dataset above, and that a consistent
monomial was found. Use the bound derived in class to compute an upper bound

2

on the generalization error ε of this monomial. Derive a bound that holds with
95% confidence (so that δ = 0.05).

Answer: We know that in the realizable setting if m ≥ log |H|/δ
ε

, then generaliza-
tion error is less than ε with probability at least 1 − δ. So this is also true for
m = log |H|/δ

ε
. So generalization error ≤ ε = log |H|/δ

m
. Setting m = 9, |H| = 28 and

δ = 0.05, we get an upper bound of 0.95 on the generalization error.

(d) Continuing the last question in which your algorithm is applied to data with n = 8
attributes, how many training examples would be needed to make sure that the
generalization error of a consistent monomial is at most 10% with 95% confidence?
Answer: We need m ≥ log |H|/δ

ε
to ensure an error less than ε with probability at

least 1− δ. Plugging in ε = 0.1, δ = 0.05 and |H| = 28, we conclude that we need
at least ∼ 86 points.

3

