
Precept 5: File Systems

COS 318: Fall 2017

Project 5 Schedule

● Precept: Monday 11/27, 7:30pm

○ (You are here)

● Design Review: Monday 12/04

● Due: Sunday, 12/10, 11:55pm

Precept Overview

● File System Support

● Shell Support

● Design Review

File System Review

File System Layout

● Unix-like file system based on xv6

● Disk Layout:

Image Source: xv6 book, Chapter 6

https://www.cs.princeton.edu/courses/archive/fall17/cos318/readings/xv6.pdf
https://www.cs.princeton.edu/courses/archive/fall17/cos318/readings/xv6.pdf

File System Organization

File Descriptor Layer

Path Layer

Directory Layer

Inode Layer

Logging Layer

Block Layer

Buffer cache Layer

Disk Driver Layer

Disk Driver Layer

● Implements driver for disk operations

○ Located in kern/dev/disk/ide.c

● inb, outb: perform low-level port I/O

● Don’t worry too much about this

Buffer Cache Layer

● In-memory cache for disk blocks

○ Disk blocks are held in memory buffers while being
used

○ Get written back to disk during recycle

● In comments: brelse = bufcache_release

Block Layer

● Implements operations on blocks

○ read_superblock

○ block_zero, block_alloc, block_free

● mCertiKos specific layer

Log Layer

● Implements logging for crash recovery

○ System calls log all disk write ops on disk

○ Logs “complete” after all expected ops are logged

○ Wipes the log after disk ops actually happen

● On boot: check logs + redo committed
operations

Inode Layer

● Inodes hold file metadata

○ E.g. size, # of links, data block addrs, etc.

● dinode = on-disk inode, inode = in-memory
inode: holds additional kernel info

● Indexed by inode number: unique identifier

Directory Layer

● Directories are implemented as inodes

● Its “data” = sequence of directory entries

○ Directory entries: name + inode number

○ Can hold files, or other directories

Path Layer

● Fake Layer

● Helper functions for converting paths to inodes

● You will be writing most of this

File Descriptor Layer

● File Descriptors: Inode wrappers with additional
info (e.g. type, R/W, etc.)

● Global table of open files + each process has list
of open files

● Layer most of the kernel interacts with

What you are responsible for

Scheduler Changes

● Need a way for threads to sleep on arbitrary
resources

○ Each kernel variable has unique address

○ Channel = address of variable / resource

● Implement: thread_sleep and thread_wakeup

File System Changes

● dir_lookup and dir_link and skipelem

○ Straightforward: follow the directions

● namex: ensure you handle locks and edge cases

● Several system call handlers: also straightforward

○ Use tcb_get_openfiles as necessary

Inline ASM

● First colon: outputs,

Second: inputs,
Third: clobbered registers

● a, b, c, d are x86 registers

● Use simplest solution:

● See this and this for more
information

Example:

asm volatile(“int %2”
: “=a” (errno),
 “=b” (ret)
: “i” (T_SYSCALL),
 “a” (SYS_write),
 “b” (fd),
 ...
: “cc”, “memory”);

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Constraints.html

Shell Support

Shell Command

● All shell commands are based on the
implementation of file system.

● Shell is like a wrapper of the file system.

● Comman: ls, pwd, cd,cp,....

● Should support -r option for cp and rm.

Procedure
● Create a new user process called “shell” in

kern/init/init.c.

● Implement system calls to read inputs from
users. Feel free to use functions in
kern/dev/console.c;

● Then implement each command depending on
the input from users.

Design Review

Design Review

1. Explain why not having any locks around the global
in-kernel IO buffers is an issue. Clearly explain potential
issues with the provided implementation.

2. The core unix shell commands are implemented on top
of the underlying file system. Briefly explain what the
following commands do, in terms of the file system
interface implemented in mCertiKos: ls, cd, mv, cat

Questions?

