
Precept 4: Multicore + Preemption

COS 318: Fall 2017



Project 4 Schedule

● Precept: Monday 11/6, 7:30pm

○ (You are here)

● Design Review: Monday 11/13

● Due: Sunday, 11/19, 11:55pm



Precept Overview

● Adding multicore support

● Preemption

● Producer-Consumer problem

● Project specific topics



Multicore Support



Supporting “SMP”

● SMP: Symmetric Multiprocessing

○ All CPUs have equivalent access to resources

● Bootup: BSP initializes system + activate APs

● Each CPU has a core and a LAPIC

○ LAPIC: Performs interrupt routing and delivery



Stack organization

● Each processor needs its own kernel stack

○ Different from stacks used by process’s kernel threads

○ Location specified by processor’s TSS

● We use “kernel bootstrap stacks”

○ Switch to process kernel stack after performing setup



Multiprocessor OS: CPU State

● Must distinguish between global state and 
per-CPU state

● What state is private to a CPU?



Multiprocessor OS: Locking

● We can now have multiple CPUs in the kernel at 
the same time

○ What if they write to the same kernel memory?

● Strawman approach: Big Kernel Lock

● Our approach: Fine grained locking



Preemptive Scheduling



Preemption: Clock interrupts

● Current OS: One process can hog CPU

○ Want to preempt processes after a timeout

● On timer interrupt: forcefully switch to another 
thread

○ Allows interleaving without explicit yields



Preemption: Scheduling

● LAPIC can give us timer interrupts

○ Count number of milliseconds thread has run for

○ Yield once runtime > threshold

● Choose another thread to run

○ We use round-robin



Preempting Kernel Execution



Which part will be affected?

● Temporarily enable interrupts during the 
executions of sys_produce and sys_consume

● Leave other parts of the kernel unchanged;

● So only enable interrupts during these two 
functions.



Disable Interrupts in Produce and Consume

● When sys_produce or sys_consume call functions 
in the kernel, they should first disable interrupts.

● intr_local_enable and intr_local_disable: 
kern/dev/intr.h;



What you should do?

● Only adding statements to enable or disable 
interrupts;

● Don’t worry about how preempting kernel 
execution is achieved (Read Spec if you have 
interest);



Improvement on Trap function

● Calling trap function => Switch kernel stack and 
page structure;

● Unnecessary when the interrupt is triggered in 
the kernel.

● Method: Remember the last active thread ID for 
each CPU; 



Improvement on Sys_Spawn function

● Detect possible errors and set appropriate error 
codes;

● Possible Error Codes: E_EXCEEDS_QUOTA, 
E_MAX_NUM_CHILDREN_REACHED, E_INVAL_CHILD_ID 
(Can be found in kern/lib/syscall.h)



The Producer and Consumer 



What you should do

● Implement condition variables and a bounded 
buffer as shared object.

● Utilized the spinlock.c => CV

● Once Bounded-buffer is full, The producer 
process should be put in the waiting list;

● Similarly, Empty => The consumer process;



What you should do

● Open-Ended Part

● Please add appropriate debug output so that you 
and graders know your codes are working (eg. 
when buffer is full => prompt “buffer is full”, “add 
Consumer process 1 to waiting list”).



Project Specific Topics



General Tips

● Read Section 2.3 (Interprocess Communication)

○ CV / Monitor version of Producer / Consumer should 
give you a general idea

● Debugging concurrent programs is hard

○ gdb can show what each thread is doing

● Please clean up before you submit!



Design Review

● Explain how to use condition variables and locks 
to implement a bounded buffer.

● Provide pseudocode for the implementation of 
sys_produce and sys_consume, using above 
bounded buffer.



Questions?


