
Precept 3: Process Management

COS 318: Fall 2017

Project 3 Schedule

● Precept: Monday 10/16, 7:30pm

○ (You are here)

● Design Review: Monday 10/23

● Due: Sunday, 10/29 11/05, 11:55pm

Precept Overview

● User Processes and Threads

● Trap and Interrupt Handling

● Copy-on-write and Fork

● Project Specific Topics

User Processes and Threads

User Process

● Each user process has a corresponding kernel
thread.

● When user process tries to enter the kernel
mode, it first traps into its kernel thread.

Example : sys_yield

Process A

Kernel Thread A Kernel Thread B

Process B

Yield()

sys_yield()

proc_start_user（）

Example : Page Fault

Process A

Kernel Thread A

Page Fault

Page Fault Handler

proc_start_user（）

Thread Context Switch

● Change from one kernel thread to another.

● Save the old context and fetch the new.

○ Save the old: EIP, ESP, EDI, ESI, EBX, EBP;

○ Fetch the new; (where should the new EIP be
placed?)

○ < 20 lines assembly code.

Kernel Thread
● TCB: thread control block;

○ State: Running, Ready, Dead;

○ Prev: the previous TCB;

○ Next: the next TCB;

● Sleeping Queue: contains all TCBs that can be
woken up by current threads;

Tip
● Ready Queue: there is one ready queue storing

all ready TCBs. TQueuePool[NUM_IDS]

● Please read files in kern/proc/PProc/PProc.c

○ proc_start_user()

○ proc_create ()

● Read the assembly file: kern/dev/idt.S

Traps and Interrupts

Terminology Dump

● Interrupt: caused by hardware event / int instruction

● Exception: caused by currently running code

○ Trap: software defined exception

○ Fault: an “error” that is typically recoverable

○ Abort: an “error” that is typically non-recoverable

Handling Interrupts / Exceptions

● Can’t let user code enter kernel arbitrarily

○ Can only enter kernel through interrupts / exceptions

● CPU looks up appropriate handler in the
Interrupt Descriptor Table (IDT)

● Need to save / restore previous state

Interrupt Descriptor Table

● Table of entry points to exception handlers

○ Contains the EIP and CS values to load

● CPU uses interrupt vector as index into the table

● Location of IDT: Determined by IDTR

Switching to Kernel mode

● Need to save state before handling the exception

○ Must also be independent of user level code

● Solution: define a kernel-only stack and save /
restore state from that

● Location of stack: in Task State Segment (TSS)

System Calls

● Asks the kernel to perform some task

● Invoked with int 0x30 in our system

● Number: %eax, arguments: other registers

● Error No.: %eax, return values: other registers

Copy-on-write and Fork

Fork System Call
● Create Child Process;

○ Duplicate Parent Process;

○ Copy all parent memory state;

● Return 0 in the child process and child’s PID in the parent
process.

● Example:nhttp://www.csl.mtu.edu/cs4411.ck/www/NOTE
S/process/fork/create.html

http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html

Copy-on-write
● Map the same pages in the two processes;

● Set page read-only and SET COW bit = 1 in PTE;

● When one process tries to write the page,

○ Page Fault Happen

○ Assign a new page and copy the old page content;

○ The new page and the old page becomes writeable.

Project Specific Topics

Implementing Fork

● Need to create your own layer

○ Follow the structure of the other layers!

● Import what you need from MPTIntro

● Import your new layer’s functions to write
sys_fork

Design Review

● When switching from one kernel thread to another, which registers
must be stored on the stack, and in what order? Where will the
return address be located?

● When crossing the user mode - kernel mode boundary, what state
must be saved, and where is it saved?

● How are system calls invoked, and how does the kernel determine
which system call handler to use?

● Prepare an outline of how you plan to implement the sys_fork
system call.

Questions?

