

Precept 1: Bootloader / PMM

COS 318: Fall 2017

Logistics: Office Hours

- Tuesday, 2:30 4:30pm (Qizhe)
- Thursday, 5 7pm (Lance)
- Friday, 1 3 pm (Perry)
- Saturday, 2 4 pm (Felix)
- Sunday, 3 5 pm (Leila)

• Design Review: Monday 9/25

• Finished!

- Precept: Monday 9/25, 7:30pm
- Due: Sunday, 10/01, 11:55pm

- QEMU + GDB
- Bootloader
- Physical Memory Management

Running QEMU GDB

- Run make gemu-gdb from lab1 directory
- In 2nd terminal: run gdb from lab1 directory
- Make sure you are on the same machine!
 - O Check with hostname
 - o ssh <netid>@courselab0[1|2].cs.princeton.edu

GDB Demo!

- Job: Load kernel into memory + prepare for its execution
 - Reads 'e820' memory map table
 - Switches from Real to Protected mode
 - Finds and jumps to kernel entry point

Bootloader: Where is everything?

- ELF = Executable and Linking Format
 - Binary output of the linker
- Essentially a metadata header, followed by the program sections
- Load Address: ph->p_pa, Entry Point: e_entry

PMM: MATIntro Layer

- AT array:
 - has 2 ^ 20 entries;
 - Each entry => One page
 - perm (0 => BIOS, 1=> Kernel; 2=> Normal)
 - allocated (0 => unallocated; >0 => allocated)

PMM: MATIntro Layer

Four functions to implement: Very simple

- at_is_norm
- at_set_perm
- at_is_allocated
- at_set_allocated

- Initialize AT array by utilizing info from memory map table:
 - look at import.h file:
 - get_mms
 - get_mml
 - is_usable

PMM: MATOp Layer

- palloc
- pfree (very simple)

- palloc: choose a free page from AT array
 - Do you have to start searching from AT[0]?
 - Hint: what is the address space reserved for kernel?

- palloc: choose a free page from AT array
 - at_is_norm
 - \circ at_is_allocated
 - at_set_allocated

Questions?