COS 318: Operating Systems
o0

Implementing Threads

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Revisit Monolithic OS Structure

¢ Kernel has its address space,
shared with all processes

+ Kernel consists of
Boot loader User User

BIOS Process Process

ke 666 1966
e Scheduler SS S SS S
. S.cr;éduler éé é

e Use a ready queue to hold all Kernel scheduler
ready threads

e Schedule in a thread in the
same address space (thread
context switch)

e Schedule in a thread with a

@ different address space
O (process context switch)

+ Scheduler schedules threads on context switch
+ Voluntary

e Thread_yield

e Thread_join (if child is not done yet)
+ Involuntary

e Interrupt or exception

e Some other thread is higher priority

Today’ s Topics
o0
¢ Thread implementation
o Non-preemptive versus preemptive threads
e Kernel vs. user threads
2
Thread context switch
o0

Non-Preemptive Scheduling
o0
Terminate
(call scheduler)
Scheduler
dispaich Block for resource
Yield (call scheduler)
Create
Blocked
Resource becomes available
(move to ready queue)
Thread Context
o0

+ Can be classified into two types:
e Private
e Shared

¢ Shared state
e Contents of memory (global variables, heap)
e File system

¢ Private state
e Program counter
o Registers
e Stack

Non-Preemptive Scheduling (contd.)

+ A non-preemptive scheduler invoked by calling
e block()
e yield()

The simplest form
Scheduler:
save current process/thread state
choose next process/thread to run

dispatch (load PCB/TCB and jump to it)

¢ Scheduler can be viewed as just another kernel thread

Where and How to Save Thread Context?
o0

+ Save the context on the thread’s stack
e Many processors have a special instruction to do it efficiently
e But, need to deal with the overflow problem

Thread 2 { frame Save the context frame
| frame | of Thread 1 to - t) .

Thread 1 { its stack ontex
frame

frame frame

+ Check before saving
e Make sure that the stack has no overflow problem
e Copy it to the TCB residing in the kernel heap
e Not so efficient, but no overflow problems

Thread Data Structures
o060
Shared Thread 1’s Thread 2’s
State Per-Thread State Per-Thread State
Thread Control Thread Control
Code Block (TCB) Block (TCB)
Stack Stack
Information Information
Saved Saved
Registers Registers
Global | e b
Variables Thread Thread
Metadata Metadata
Heap
A
Voluntary thread context switch
o060

¢ Save registers on old stack

+ Switch to new stack, new thread
+ Restore registers from new stack
¢ Return

¢ Exactly the same with kernel threads or user threads

Thread Control Block (TCB)

e Current state
* Ready: ready to run
* Running: currently running
* Blocked: waiting for resources
e Registers
e Status (EFLAGS)
e Program counter (EIP)
e Stack

Pseudo code for thread_switch

/I We enter as oldThread, but we return as newThread.
/I Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
pushad; /I Push general register values onto the old stack.
oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
%esp = newThreadTCB->sp; // Switch to the new stack.

popad; /I Pop register values from the new stack.
return;

Preemption

+ Why?
e Timer interrupt for
CPU management
e Asynchronous I/O completion
¢ When is CPU interrupted?
e Between instructions

e Within an instruction,
except atomic ones

CPU

Memory

Interrupt

¢ Manipulate interrupts ‘ ‘
e Disable (mask) interrupts
e Enable interrupts
e Non-Maskable Interrupts

State Transition for Preemptive Scheduling

Terminate
(call scheduler)

Scheduler
dispatch
Block for resource
(call scheduler)

Yield, Interrupt
(call scheduler)

Create

Resource free, I/0 completion interrupt
(move to ready queue)

State Transition for Non-Preemptive Scheduling
o0

Terminate
(call scheduler)

Scheduler
dispatch
Block for resource
Yield (call scheduler)

call scheduler)
Blocked

Resource becomes available
(move to ready queue)

Create

15 %& 16

Interrupt Handling for Preemptive Scheduling

o0
¢ Timer interrupt handler:

e Save the current process / thread to its PCB / TCB
e Call scheduler

+ /O interrupt handler:

e Save the current process / thread to its PCB / TCB
e Do the I/O job

e Call scheduler

¢ Issues
e Disable/enable interrupts
e Make sure that it works on multiprocessors

User Threads vs. Kernel Threads

Process Thread Process Thread

\

Kernel
space { Kernel Kernel E E
/)}
/ I [
Run-time Thread Process Process Thread
system table table table table

+ Kernel knows only about
processes, not threads

+ Context switch at user-level + A user thread
without OS (Java threads) e Makes a system call (e.g. I/0)
+ Preemptive scheduling? e Gets interrupted
& + What about I/O events? + Context switch in the kern1e8I

Interactions between User and Kernel Threads
o0
¢ Each thread has its own user stack. What about kernel
stack? Two possibilities:
e Each user thread has its own kernel stack
e All threads of a process share the same kernel stack

Private kernel stack | Shared kernel stack

Memory usage More Less
System services Concurrent access Serial access
Multiprocessor Yes Not within a process

Complexity More Less

20

Summary of User vs. Kernel Threads
o0
¢ User-level threads
e User-level thread package implements thread context switches
e OS doesn’t know the process has multiple threads
e Timer interrupt (signal facility) can introduce preemption

e When a user-level thread is blocked on an I/O event, the whole
process is blocked
* Precisely the case for which threads are often useful ...
e Allows user-level code to build custom schedulers

+ Kernel-threads
e Kernel-level threads are scheduled by a kernel scheduler
e A context switch of kernel-threads is more expensive than user
threads due to crossing protection boundaries
+ Hybrid

e |t is possible to have a hybrid scheduler, but it is complex
19

Summary

+ Non-preemptive threads issues
e Scheduler
e Where to save contexts
¢ Preemptive threads
e Interrupts can happen any where!
+ Kernel vs. user threads
e Main difference is which scheduler to use

%& 21

