COS 318: Operating Systems
o0

Protection and Virtual Memory

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Protection Issues

o
+ CPU

e Kernel has the ability to take CPU away from users to
prevent a user from using the CPU forever

e Users should not have such an ability
¢ Memory
e Prevent a user from accessing others’ data

e Prevent users from modifying kernel code and data
structures

+ /0
e Prevent users from performing “illegal” 1/Os

+ Question
e What’ s the difference between protection and security?

o 3
e

An interrupt or exception (INT)

l

Kernel (privileged) mode
*» Regular instructions

* Privileged instructions

* Access user memory

* Access kernel memory

l |

A special instruction (IRET)

User mode
* Regular instructions
* Access user memory

@

Outline
o0
¢ Protection mechanisms and OS Structures
+ Virtual Memory: Protection and Address Translation
2
Architecture Support: Privileged Mode
o0

Privileged Instruction Examples

¢ Memory address mapping

Flush or invalidate data cache

¢ Invalidate TLB entries

¢ Load and read system registers

+ Change processor modes from kernel to user

+ Change the voltage and frequency of processor
+ Halt a processor

+ Reset a processor

¢ Perform I/O operations

Layered Structure

+ Hiding information at each layer
Layered dependency
+ Examples ‘ Level N ‘

e THE (6 layers)
Mostly for functionality splitting

e MS-DOS (4 layers)

L 2

¢ Pros ’ Level 2 ‘
e Layered abstraction
¢ Cons ’ Level 1 ‘

o Inefficiency

Monolithic
o000
¢ All kernel routines are together,
linked in single large executable
e Each can call any other
e Services and utilities User User
+ A system call interface program program
¢ Examples: N
e Linux, BSD Unix, Windows, ... N 2
Y o
¢ Pros
e Shared kernel space T
e Good performance Kernel
¢ Cons (many things)
e Instability: crash in any procedure
brings system down
e Inflexible / hard to maintain, extend
= :

x86 Protection Rings
o000

Privileged instructions
Can be executed only
When current privileged
Level (CPR) is 0

services

Applications

Microkernel

+ Services implemented as regular
processes

+ Micro-kernel obtain services for
users by messaging with services
¢ Examples:
e Mach, Taos, L4, OS-X
¢ Pros?
e Flexibility
e Fault isolation
¢ Cons?
o Inefficient (boundary crossings)

e Inconvenient to share data
between kernel and services

e Just shifts the problem?

e

User OS
program Services

&
Jﬁ‘o
2z

_L

p-kernel

Two Popular Ways to Implement VMM

Linux Apps Linux Apps

Linux

Hardware

VMM runs on hardware

(A special lecture later in the semester)

s

:

Hardware

VMM as an application

Linux

Virtual Machine

00
¢ Virtual machine monitor
e Virtualize hardware
Apps Apps
e Run several OSes
e Examples 0s, R
« IBM VM/370 w, wm,
* Java VM

* VMWare, Xen

Virtual Machine Monitor

i 4

Raw Hardware

¢ What would you use
virtual machine for?

S

Memory Protection

o000
To support multiprogramming, we need “Protection”

¢ Kernel vs. user mode
¢ Virtual address spaces and Address Translation

Physical memory
No protection

Abstraction: virtual memory
Each program isolated from all
others and from the OS

Limited size llusion of “infinite” memory

Sharing visible to programs Transparent --- can’ t tell if

memory is shared

Virtual addresses are translated to physical addresses

The Big Picture

+ DRAM is fast, but relatively expensive
¢ Disk is inexpensive, but slow
e 100X less expensive
e 100,000X longer latency
e 1000X less bandwidth
¢ Our goals
e Run programs as efficiently as possible
e Make the system as safe as possible

)

CPU

Memory

)

Issues

o060
¢ Many processes

e The more processes a system can handle, the better
¢ Address space size

e Many small processes whose total size may exceed
memory

e Even one process may exceed the physical memory
size
¢ Protection
e A user process should not crash the system

e A user process should not do bad things to other
processes

o

Consider A Simple System

e browser needs more
memory than is on the
machine?

)

09
¢ Only physical memory
e Applications use
physical memory directly x9000
¢ Run three processes
e Email, browser, gcc X7000
¢ What if
browser x5000
e gcc has an address
error? gce x2500
e browser writes at x70507?
Free
e email needs to expand? x0000

Handling Protection

o080
¢ Errors in one process should not affect others

¢ For each process, check each load and store
instruction to allow only legal memory references

gcc
address
CPU Check

Handling Finiteness: Relocation
o080

+ A process should be able to run regardless of where
its data are physically placed or physical memory size

+ Give each process a large, static “fake” address
space that is large and contiguous and entirely its own

¢ As a process runs, relocate or map each load and
store to addresses in actual physical memory

email

CPU

address Check &
relocate

Address Mapping and Granularity
00
+ Must have some “mapping” mechanism

e Map virtual addresses to physical addresses in RAM or
disk
¢ Mapping must have some granularity
e Finer granularity provides more flexibility
e Finer granularity requires more mapping information

Virtual Memory

00
+ Flexible

e Processes (and data) can move in memory as they
execute, and be part in memory and part on disk

¢ Simple
e Applications generate loads and stores to addresses in
the contiguous, large, “fake” address space
+ Efficient
e 20/80 rule: 20% of memory gets 80% of references
e Keep the 20% in physical memory
+ Design issues
e How is protection enforced?
e How are processes and data relocated?
e How is memory partitioned? 18

Generic Address Translation

¢ Memory Management Unite
(MMU) translates virtual
address into physical address CPU
for each load and store
¢ Combination of hardware and Virtual address
(privileged) software controls
the translation MMU
¢ CPU view
e Virtual addresses
¢ Each process has its own
memory space [0, high]
e Address space
¢ Memory or I/O device view
e Physical addresses

| Physical address

1/0

device

iy~ o)

Goals of Translation

Address Translation Methods

¢ Base and Bounds

¢ Segmentation

¢ Paging

+ Multilevel translation
¢ Inverted page tables

o000
+ Implicit translation for each
memory reference Registers
+ A hit should be very fast
+ Trigger an exception on a 2.3x
miss
¢ Protected from user’s errors
10-20x
100-300x
Paging
20M-30Mx
21
Base and Bounds
o000
virtual memory physical memory
0
code 6250 (base)
data
bound
stack 62p0+bound

Each program loaded into contiguous
regions of physical memory.
Hardware cost: 2 registers, adder, comparator.

5 73

Base and Bound (or Limit)

+ Builtin Cray-1

CPU has base and bound reg

+ Base holds start address of running
process; bound is length of its
addressable space

+ Protection

e A process can only access physical
memory in [base, base+bound]

¢ On a context switch
e Save/restore base, bound regs
¢ Pros
e Simple
¢ Cons
e Can'tfit all processes, have to swap
e Fragmentation in memory
e Relocate processes when they grow

*

virtual address

physical address

24

%

@ e Compare and add on every instruction

Segmentation Segmentation example

o o0
¢ Each process has a table of
(seg’ Size) (assume 2 bit segment ID, 12 bit segment offset)
¢ Treats (seg, size) as a fine- Virtual address v-segment # p-segment segment physical memory

grained (base, bound) segment _.@_. start size

+ Protection error code (00) 0x4000 0x700
e Each entry has - data (01) 0 0x500 0
(nil, read, write, exec) seg S12¢ _ (10) 0 0
; —| — | 4ff
+ On a context switch stack (11) 0x2000 0x1000
e Save/restore table in kernel : .
memory virtual memory
¢ Pros | o 2000
e Efficient: programmer knows 6ff
program and so segments ot
e Provides logical protection + 1000
e Easy to share data 14f
¢ Cons 4000
e Complex management physical address 3000 a6t
e Fragmentation
3fff
25
) ’)
Segmentation example (cont’ d) Paging
o0 o0
¢ Use a fixed size unit called
Virtual memory for strlen (x) physical memory for strlen (x) page instead of segment Virtual address page table size
* |
. Use a page table to VPage # | offset
Main: 240 store 1108, r2 x: 108 abc\o translate error
244 store pc+8, r31 + Various bits in each entry &/
248 jump 360 + Context switch Page table
24c Main: 4240 store 1108, r2 e Similar to segmentation PPaget
4244 store pc+8, r31 — \
strlen: 360 loadbyte (r2), r3 4248 jump 360 ¢ What should be the page
size? :
424c
420 jump (r31) + Pros PPagdt |
strlen: 4360 loadbyte (r2), r3 e Simple allocation
e Easy to share
x: 1108 abc\0 4420 jump (r31) ¢ Cons
e Big table .
e How to deal with holes? Physical address
= ;
N A9

Virtual address

‘Vseg# H VPage # ‘ offset }7

Page table
seg size _|— PPage#
p—

. | \

1 PPagle | .
Every segment has

>

its own page table :]: PPage # offset

error Physical address

Paging example
O |
virtual memory physical memory
a 4 i
b i
c 4 :(
d 3 8
e 1 12
f /
9 9
h 1 h
i page size: 4 bytes :
i c
k d
|
Segmentation with paging
o0

How Many PTEs Do We Need?

¢ Assume 4KB page
e Needs “low order” 12 bits

¢ Worst case for 32-bit address machine
e # of processes x 220

e 220 PTEs per page table (~4Mbytes), but there might be
10K processes. They won’t fit in memory together

+ What about 64-bit address machine?
e # of processes x 252
e A page table cannot fit in a disk (252 PTEs = 16PBytes)!

30

Segmentation with paging — Intel 386

+ As shown in the following diagram, the Intel
386 uses segmentation with paging for
memory management with a two-level
paging scheme.

@

logical address | selector |

Intel 30386 address translation

offset |

descriptor table

segment descriptor ——< +

linear address | directory

page ‘ offset ‘ page frame

page directory

directory entry
page directory T

page table

physical address

L—» page table entry

T

{ base register

Inverted Page Tabl

¢ Main idea
e One PTE for each
physical page frame
e Hash (Vpage, pid) to
Ppage#
¢ Pros

e Small page table for
large address space

+ Cons
e Lookup is difficult

e Overhead of
managing hash
chains, etc

o4

es

Virtual
address

Physical
address

‘ pid ‘vpage‘ offset ‘

‘ k ‘offset‘

pid ‘Vpage

Inverted page table

n-1

35

Multiple-Level Page Tables

Virtual address
| dir |table| offset |

pte

Directory

What does this buy us?

34

Virtual-To-Physical Lookups

o0
¢ Programs only know virtual addresses

e Each program or process starts from 0 to high address
+ Each virtual address must be translated
e May involve walking through the hierarchical page table

e Since the page table stored in memory, a program
memory access may requires several actual memory
accesses

+ Solution
e Cache “active” part of page table in a very fast memory

ﬁ@g 36

¢ On a TLB miss

e |f the page containing the PTE is valid (in memory),

hardware loads the PTE into the TLB
» Write back and replace an entry if there is no free entry

e Generate a fault if the page containing the PTE is
invalid, or if there is a protection fault

e VM software performs fault handling

e Restart the CPU

+ On a TLB hit, hardware checks the valid bit
e [f valid, pointer to page frame in memory

e If invalid, the hardware generates a page fault
+ Perform page fault handling
® « Restart the faulting instruction
= 39
e

Translation Look-aside Buffer (TLB)
o0
Virtual address
VPaget | PPage# \‘|
|V Page# | PPage# : Miss
I VPage#lPPage#l : Real
\ H page
[LB | table
Hi
PPage # offset
Physical address
37
Hardware-Controlled TLB
o0

Bits in a TLB Entry

+ Common (necessary) bits

e Virtual page number

e Physical page number: translated address

e Valid bit

e Access bits: kernel and user (none, read, write)
+ Optional (useful) bits

e Process tag

e Reference bit

e Modify bit

e Cacheabile bit

38

Software-Controlled TLB

¢ On a miss in TLB, software is invoked
e Write back if there is no free entry
e Check if the page containing the PTE is in memory
e If not, perform page fault handling
e Load the PTE into the TLB
e Restart the faulting instruction
+ On a hitin TLB, the hardware checks valid bit
e If valid, pointer to page frame in memory

e If invalid, the hardware generates a page fault
» Perform page fault handling
» Restart the faulting instruction

40

10

Cache vs. TLB

Data
%

Cache

’ Vpage # | offset ‘

1L it

Miss Miss

‘ ppage # | offset ‘

¢ Similarities + Differences
e Cache a portion of memory e Associativity
e Write back on a miss e Consistency

42

Consistency Issues
o060
+ “Snoopy” cache protocols (hardware)

e Maintain consistency with DRAM, even when DMA
happens
+ Consistency between DRAM and TLBs (software)
e You need to flush related TLBs whenever changing a
page table entry in memory
+ TLB “shoot-down”
e On multiprocessors, when you modify a page table
entry, you need to flush all related TLB entries on all
processors, why?

44

)

TLB Related Issues
o000
¢ What TLB entry to be replaced?

e Random

e Pseudo LRU
+ What happens on a context switch?

e Process tag: invalidate appropriate TLB entries

e No process tag: Invalidate the entire TLB contents
+ What happens when changing a page table entry?

e Change the entry in memory

e Invalidate the TLB entry

e

43

Summary: Virtual Memory
N
¢ Virtual Memory

e Virtualization makes software development easier and enables
memory resource utilization better

e Separate address spaces provide protection and isolate faults

¢ Address Translation

e Translate every memory operation using table (page table,
segment table).

e Speed: cache frequently used translations

¢+ Result
e Every process has a private address space

e Programs run independently of actual physical memory
addresses used, and actual memory size

e Protection: processes only access memory they are allowed to

11

