
12/11/17

1

COS 318: Operating Systems

Virtual Machine Monitors

Jaswinder Pal Singh
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

Virtual Machine Monitor (VMM)

u  Sits between multiples OSes and hardware (or a host OS)
u  Presents a hardware interface to the OSes above
u  Gives the illusion to each OS above that it controls the

whole machine
l  Actually, the VMM does, and each OS sees a virtual machine
l  The VMs (and OSes) share the actual hardware resources

u  Manages (multiplexes) resources among several virtual
machines (VMs)

u  Isolates VMs from each other
u  Similar to what an OS does: abstraction, resource mgmt
u  a.k.a. Hypervisor

2

History

u Have been around since 1960’s on mainframes
l  Used to run apps on different OSes on same (very

expensive) mainframe
l  Good example – VM/370

u Computers became cheaper, people lost interest
u Have resurfaced on commodity platforms

l  Server Consolidation: save space, power; data centers
l  High-Performance Compute Clusters: run different OSes
l  Managed desktop / thin-client

•  Save desktop in a VM and bring it with you on a USB drive

l  Software development / kernel hacking
•  Crash your development kernel but don’t disable whole machine

3

Goals
u Manageability

l  Creation, maintenance, administration, provisioning, etc.

u Performance
l  Overhead of virtualization should be small

u  Isolation
l  Activity of one VM should not impact other active VMs
l  Data of one VM is inaccessible by another

u Scalability
l  Minimize cost per VM

Same goals as for many susbystems
4

12/11/17

2

VMM Types

5

Virtualization Styles

u  Fully virtualizing VMM
l  Virtual machine looks exactly like a (some) physical machine

•  Not necessarily exactly like the underlying hardware itself
l  Run guest OS unchanged
l  VMM is transparent to the OS

u  Para- virtualizing VMM

l  Guest OS is changed to cooperate with VMM
l  Sacrifice transparency for better performance
l  E.g. VMM can provide idealized view of some hardware
l  E.g. VMM can provide “hypervisor API” so guest can perform

certain functions, e.g. with optimizations for performance

6

VMM Classification

7

Type I Type II

Fully-virtualized

Para-virtualized

VMware ESX VMware Workstation.
VIrtualBox, Virtual PC

User Mode Linux Xen

VMM Implementation

Should efficiently virtualize the hardware
u  Provide illusion of multiple machines
u  Retain control of the physical machine

Subsystems
u  Processor Virtualization
u  I/O virtualization
u  Memory Virtualization

8

12/11/17

3

Processor Virtualization

Popek and Goldberg (1974)
l  Sensitive instructions: only executed in kernel mode
l  Privileged instructions: trap when run in user mode
l  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions
•  i.e. sensitive instructions will always trap if run in user mode

l  When guest OS, which runs in user mode, runs a

sensitive instruction, must trap to VMM so it maintains
control

9

Example: System Call (Type 1 Hypervisor)

Process Operating System VMM

1.System call: Trap to OS

2. Process trapped: call OS
trap handler (at reduced
privilege)

3. OS trap handler: Decode
trap and execute syscall;
When done: issue return-
frrom-trap

4. OS tried to return from
trap; do real return-from-trap

5. Resume execution (@PC
after trap)

10

x86 Processor Virtualization

u  x86 architecture is not fully virtualizable
l  Certain privileged instructions behave differently when

run in unprivileged mode, e.g. do nothing (e.g. POPF)
l  Certain unprivileged instructions can access privileged

state (so guest OS would be able to see that it’s not
running in kernel mode)

u Techniques to address inability to virtualize x86
l  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
l  Perform Binary Translation (Full Virtualization)
l  Note: both basically remove problematic (non-

virtualizable) instructions from the guest OS

11

I/O Virtualization

u  Issue: lots of I/O devices
u Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
u  Insight: Device driver already written for popular

Operating Systems
u One Solution:

l  Present virtual I/O devices to guest VMs
l  Channel I/O requests to a trusted host VM running a popular

OS that has the device drivers

12

12/11/17

4

I/O Virtualization

13

VMM + Device Drivers VMM

(a)  Virtual DD, channel to guest OS
- e.g. Xen

(b)  Integrate DD with VMM
- e.g. Vmware ESX (Linux DDs)

Memory Virtualization

u  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

u  The shadow page keeps mapping from virtual pages
within a VM to real physical pages

u  When VM tries to change MMU to point to a specific
page table, this traps to VMM which updates MMU to
point to the shadow page table
l  Shadow PT has actual mappings between virtual pages in VM

and real physical pages in machine
u  Keeping shadow page table in sync with guest PT:

l  When guest OS updates page table, VMM updates shadow
l  E.g. pages of guest OS page table marked read-only

14

Case Study: VMware ESX Server

u  Type I VMM - Runs on bare hardware

u  Full-virtualized – Legacy OS can run unmodified on top of

ESX server

u  Fully controls hardware resources and provides good
performance

15

ESX Server – CPU Virtualization

u Most user code executes in Direct Execution
mode; near native performance

u For kernel code, uses runtime Binary Translation
for x86 virtualization
l  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
l  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

16

12/11/17

5

ESX Server – Memory Virtualization
u  Maintains shadow page tables with virtual to machine

address mappings.
u  Shadow page tables are used by the physical processor
u  ESX maintains a “pmap” data structure for each VM,

which holds “physical” to machine address mappings
u  Shadow page tables are kept consistent with pmap
u  With pmap, ESX can easily remap a physical to machine

page mapping, without guest VM knowing the difference

17

ESX Server – Memory Mgmt
u  Page reclamation

l  Problem: VMM does not have as good information on page
usage as guest OS, for actual page replacement algorithms

l  Solution: Ballooning technique
•  Reclaims memory from other VMs when memory is

overcommitted

u  Page sharing
l  Many VMs will use the same pages
l  Solution: – Content based sharing
l  Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

18

ESX Server- Ballooning

19

ESX Server – Page Sharing

20

•  Copy-on-write for writing shared pages

12/11/17

6

Real World Page Sharing

21

ESX Server – I/O Virtualization

u  Has highly optimized storage subsystem for networking
and storage devices
l  Directly integrated into the VMM
l  Uses device drivers from Linux kernel to talk directly to device

u  Low performance devices are channeled to special
“host” VM, which runs a full Linux OS

22

VMM + Device Drivers VMM

VMware Workstation

u  Type II VMM - Runs on host operating system
u  Full-virtualized – Legacy OS can run unmodified on

top of VMware Workstation
u  Appears like a process to the Host OS

23

Workstation - Virtualization

u  CPU Virtualization and Memory Virtualization
l  Uses Similar Techniques as the VMware ESX server

u  I/O Virtualization
l  Workstation relies on the Host OS for satisfying I/O requests
l  I/O incurs huge overhead as it has to switch to the Host OS

on every IN/OUT instruction.
l  E.g., Virtual disk maps to a file in Host OS

24

12/11/17

7

Workstation – Virtualize NIC

25

Xen

u  Type I VMM
u  Para-virtualized
u  Open-source
u  Designed to run about 100 virtual machines on a single

machine

26

Xen – CPU Virtualization

u  Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

u  Processor Rings
l  Guest applications run in Ring 3
l  Guest OS runs in Ring 1 (not ring 0 as without virtualization)
l  Xen runs in Ring 0
l  So if guest OS executes privileged instruction, it traps to Xen

27

Xen – Memory Virtualization(1)

u  Initial memory allocation is specified and memory is
statically partitioned

u  A maximum allowable reservation is also specified.
u  Balloon driver technique similar to ESX server used to

reclaim pages

28

12/11/17

8

Xen – Memory Virtualization(2)

u  Guest OS is responsible for allocating and managing
hardware page table

u  Xen involvement is limited to ensure safety and isolation
u  OS maps Xen VMM into the top 64 MB section of every

address space to avoid TLB flushes when entering and
leaving the VMM

29

Xen – I/O Virtualization

u  Xen exposes its own set of clean and simple device
abstractions – doesn’t emulate existing devices

u  I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

u  Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

30

Summary

u  Classifying Virtual Machine Monitors
l  Type I vs. type II
l  Full vs. para-virtualization

u  Processor virtualization
u  Memory virtualization
u  I/O virtualization

31

