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Topics 

◆  What’s behind the file system: Networked Storage 
hierarchy 

◆  More on the file system abstraction 
◆  File system protection 
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Evolved Data Center Storage Hierarchy 
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Alternative with no Tape 
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“Public Cloud” Storage Hierarchy 
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Examples: Google GFS, Spanner,  
Apple icloud, Amazon S3,  
Dropbox, Mozy, etc 

7 

Network File System 
u  Multiple clients share an NFS server 
u  NFS v2 was introduced in early 80s 

Network 

NFS server 

Clients 

NFS Protocols 

u  Mounting 
l  NFS server can expose 

directories for remote access 
l  Client sends a mount request 

with path name to server 
l  Server returns a handle (file 

system type, disk, i-node of 
directory, security information) 

l  Automount 

u  Directory and file accesses 
l  No open and close 
l  Use handles to read and write 
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NFS Protocol (v3) 
1.  NULL: Do nothing 
2.  GETATTR: Get file attributes 
3.  SETATTR: Set file attributes 
4.  LOOKUP: Lookup filename 
5.  ACCESS: Check Access Permission 
6.  READLINK: Read from symbolic link 
7.  READ: Read From file 
8.  WRITE: Write to file 
9.  CREATE: Create a file 
10. MKDIR: Create a directory 
11. SYMLINK: Create a symbolic link 
12. MKNOD: Create a special device 
13. REMOVE: Remove a File 
14. RMDIR: Remove a Directory 
15. RENAME: Rename a File or Directory 
16. LINK: Create Link to an object 
17. READDIR: Read From Directory 
18. READDIRPLUS: Extended read from directory 
19. FSSTAT: Get dynamic file system information 
20. FSINFO: Get static file system Information 
21. PATHCONF: Retrieve POSIX information 
22. COMMIT: Commit cached data on a server to 

stable storage 
10 

NFS Architecture 
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NFS Client Caching Issues 
u  Consistency among multiple client caches 

l  Client cache contents may not be up-to-date 
l  Multiple writes can happen simultaneously 

u  Solutions 
l  Expiration 

•  Read-only file and directory data (expire in 60 seconds) 
•  Data written by the client machine (write back in 30 seconds) 

l  No shared caching 
•  A file can be cached at only one client cache 

l  Network lock manager 
•  Sequential consistency (one writer or N readers) 
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NFS Protocol Development 
u  Version 2 issues 

l  18 operations 
l  Size: limit to 4GB file size 
l  Write performance: server writes data synchronously 
l  Several other issues 

u  Version 3 changes (most products still use this) 
l  22 operations 
l  Size: increase to 64 bit 
l  Write performance: WRITE and COMMIT 
l  Fixed several other issues 
l  Still stateless 

u  Version 4 changes 
l  42 operations 
l  Solve the consistency issues 
l  Security issues 
l  Stateful 
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Topics 

◆  What’s behind the file system: networked storage 
hierarchy 

◆  More on the file system abstraction 
◆  File system protection 

Physical storage 
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Revisit File System Abstractions 
◆  Network file system 

l  Map to local file systems 
l  Exposes file system API 
l  NFS, CIFS, etc 

◆  Local file system 
l  Implement file system abstraction on 

block storage 
l  Exposes file system API  

◆  Volume manager 
l  Logical volumes of block storage 
l  Map to physical storage  
l  RAID and reconstruction 
l  Exposes block API 

◆  Physical storage 
l  Previous lectures 

Volume Manager 

Local File System 

Network File System 

Volume Manager 
◆  Group multiple storage partitions into a logical volume 

l  Virtualization of capacity and performance   
◆  No need to deal with physical disk or sector numbers 

◆  Read(vol#, block#, buf, n) 
◆  Reliable block storage 

l  Include RAID, tolerating device failures 
l  Provide error detection at block level 

◆  Remote abstraction 
l  Block storage in the cloud 
l  Remote volumes for disaster recovery 
l  Remote mirrors can be split or merged for backups 

◆  How to implement? 
l  OS kernel: Windows, OSX, Linux, etc. 
l  Storage subsystem: EMC, Hitachi, HP, IBM, NetApp 
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File versus Block Abstractions 

Disk/Volume abstraction 
◆  Block oriented 
◆  Block numbers 
◆  No protection among users of 

the system 
◆  Data might be corrupted if 

machine crashes 
 

◆  Support file systems, database 
systems, etc. 

File abstraction 
◆  Byte oriented 
◆  Named files 
◆  Users protected from each 

other 
◆  Robust to machine failures 

 
 

◆  Emulate block storage 
interface 
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File Abstraction: File Structures 

◆  Byte sequence 
l  Read or write N bytes 
l  Unstructured or linear 

◆  Record sequence 
l  Fixed or variable length 
l  Read or write a number of 

records 
◆  Tree 

l  Records with keys 
l  Read, insert, delete a record 

(typically using B-tree) 
… 

… … … 
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File Abstraction: File Types 
◆  ASCII 
◆  Binary data 

l  Record 
l  Tree 
l  An Unix executable file 

•  header: magic number, sizes, entry point, flags 
•  text 
•  data 
•  relocation bits 
•  symbol table 

◆  Devices 
◆  Character special files (to model terminals, printers) 
◆  Block special files (to model disks) 

◆  Everything else in the system 
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File Abstraction: File Operations 

◆  Operations for “sequence of bytes” files 
l  Create: create a file (mapping from a name to a file) 
l  Delete: delete a file 
l  Open: including authentication 
l  Close: done with accessing a file 
l  Seek: jump to a particular location in a file 
l  Read: read some bytes from a file 
l  Write: write some bytes to a file 
l  A few more operations on directories: later 

◆  Implementation challenges 
l  Keep disk accesses low 
l  Keep space overhead low 

File system abstraction 

u  Directory 
l  Group of named files or subdirectories 
l  Mapping from file name to file metadata location 

u  Path 
l String that uniquely identifies file or directory 

l Ex: /cse/www/education/courses/
cse451/12au 

u  Links 
l  Hard link: link from name to metadata location 
l  Soft link: link from name to alternate name 

u  Mount 
l  Mapping from name in one file system to root of another 
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File Access Patterns 

◆  Sequential (the common pattern) 
l  File data processed sequentially 
l  Example: Editor writes out a file 

◆  Random access 
l  Access a block in file directly 
l  Example: Read a message in an inbox file 

◆  Keyed access 
l  Search for a record with particular values 
l  Usually not provided by today’s file systems 
l  Examples: Database search and indexing 
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File System vs. Virtual Memory 
◆  Similarity    

l  Location transparency 
l  Size "obliviousness" 
l  Protection 

◆  File system is easier than VM in some ways 
l  File system mappings can be slow 
l  Files are dense and mostly sequential, while page tables deal 

with sparse address spaces and random accesses 

◆  File system is more difficult than VM in some ways 
l  Each layer of translation causes potential I/Os 
l  Memory space for caching is never enough 
l  File size range vary: many < 10k, some > GB 
l  Implementation must be reliable 
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VM Page Table vs. File System Metadata 
Page table 
◆  Manage the mappings of an address 

space 
◆  Map virtual page # to physical page # 
◆  Check access permission and illegal 

addressing 
◆  TLB does it all in one cycle 

File metadata 
◆  Manage the mappings of 

files 
◆  Map byte offset to disk 

block address 
◆  Check access permission 

and illegal addressing 
◆  Implemented in software, 

may cause I/Os 
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Topics 

◆  What’s behind the file system: Storage hierarchy 
◆  More on file system abstraction 
◆  File system protection 



7 

17 

Protection: Policy vs. Mechanism 

◆  Policy is about what 
◆  Mechanism is about how 
◆  A protection system is the mechanism to enforce a 

security policy  
l  Same set of choices, no matter what policies 

◆  A security policy defines acceptable and unacceptable 
behaviors. Examples:  

•  A given user can only allocate 4GB of disk storage 
•  No one but root can write to the password file 
•  A user is not allowed to read others’ mail files 
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Protection Mechanisms 
◆  Authentication 

l  Identity check 
•  Unix: password 
•  Credit card: last 4 digits of credit card # + SSN + zipcode 
•  Airport: driver’s license or passport 

◆  Authorization 
l  Determine if x is allowed to do y 
l  Need a simple database 

◆  Access enforcement 
l  Enforce authorization decision 
l  Must make sure there are no loopholes 
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Authentication 

◆  Usually done with passwords    
l  Relatively weak, because you must remember them 

◆  Passwords are stored in an encrypted form 
l  Use a “secure hash” (one way only) 

◆  Issues 
l  Passwords should be obscure, to prevent “dictionary 

attacks”  
l  Each user has many passwords 

◆  Alternatives? 
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Protection Domain 

◆  Once identity known, provides rules 
l  E.g. what is Bob allowed to do? 
l  E.g. who can do what to file A? 

◆  Protection matrix: domains vs. resources 

File A Printer B File C 

Domain 1 R W RW 

Domain 2 RW W … 

Domain 3 R … RW 
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By Columns: Access Control Lists (ACLs) 

◆  Each object has a list of 
<user, privilege> pairs 

◆  ACL is simple, implemented in most systems 
l  Owner, group, world 

◆  Implementation considerations 
l  Stores ACLs in each file 
l  Use login authentication to identify 
l  Kernel implements ACLs 

◆  Any issues? 
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By Rows: Capabilities 

◆  For each user, there is a capability list 
l  A lists of <object, privilege> pairs  

◆  Capabilities provide both naming and protection 
l  Can only “see” an object if you have a capability 

◆  Implementation considerations 
l  Architecture support 
l  Capabilities stored in the kernel 
l  Capabilities stored in the user space in encrypted format 

◆  Issues? 
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Access Enforcement 

◆  Use a trusted party to  
l  Enforce access controls 
l  Protect authorization information 

◆  Kernel is the trusted party 
l  This part of the system can do anything it wants 
l  If there is a bug, the entire system could be destroyed 
l  Want it to be as small & simple as possible 

◆  Security is only as strong as the weakest link in the 
protection system 
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Some Easy Attacks 

◆  Abuse of valid privilege 
l  On Unix, super-user can do anything 

•  Read your mail, send mail in your name, etc.   
l  If you delete the code for COS318 project 5, your partner is not 

happy 
◆  Spoiler/Denial of service (DoS) 

l  Use up all resources and make system crash 
l  Run shell script to: “while(1) { mkdir foo; cd foo; }” 

◆  Listener 
l  Passively watch network traffic 
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No Perfect Protection System 

◆  Cannot prevent bad things, can only make it 
difficult to do them 

◆  There are always ways to defeat protection 
l  burglary, bribery, blackmail, bludgeoning, etc. 

◆  Every system has holes 
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Summary 

◆  Storage hierarchy can be complex 
l  Reliability, security, performance and cost 
l  Many things are hidden 

◆  Key storage layers above hardware 
l  Volume or block storage 
l  Local file system 
l  Network file system 

◆  Protection 
l  ACL is the default in file systems 
l  More protection is needed in the cloud 


