
1

COS 318: Operating Systems

File Systems: Networked,
Abstractions and Protection

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

3

Topics

◆  What’s behind the file system: Networked Storage
hierarchy

◆  More on the file system abstraction
◆  File system protection

4

Traditional Data Center Storage Hierarchy

LAN SAN

Clients Server

…

Storage

Storage

Onsite
Backup

Offsite
backup

WAN

Remote
mirror

5

Evolved Data Center Storage Hierarchy

LAN

Clients

Storage

…

Onsite
Backup

Offsite
backup

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

WAN

2

6

Alternative with no Tape

LAN

Clients

…

Onsite
Backup

WAN

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

WAN

Remote
Backup

“Deduplication”
Capacity and

bandwidth
optimization

7

“Public Cloud” Storage Hierarchy

WAN

Clients

…
 WAN

Interfaces Geo-plex

Examples: Google GFS, Spanner,
Apple icloud, Amazon S3,
Dropbox, Mozy, etc

7

Network File System
u  Multiple clients share an NFS server
u  NFS v2 was introduced in early 80s

Network

NFS server

Clients

NFS Protocols

u  Mounting
l  NFS server can expose

directories for remote access
l  Client sends a mount request

with path name to server
l  Server returns a handle (file

system type, disk, i-node of
directory, security information)

l  Automount

u  Directory and file accesses
l  No open and close
l  Use handles to read and write

8

proj

1 2 3 Server

/

/u /bin /dev

/u/cos126 /u/cos318

Client

3

9

NFS Protocol (v3)
1.  NULL: Do nothing
2.  GETATTR: Get file attributes
3.  SETATTR: Set file attributes
4.  LOOKUP: Lookup filename
5.  ACCESS: Check Access Permission
6.  READLINK: Read from symbolic link
7.  READ: Read From file
8.  WRITE: Write to file
9.  CREATE: Create a file
10. MKDIR: Create a directory
11. SYMLINK: Create a symbolic link
12. MKNOD: Create a special device
13. REMOVE: Remove a File
14. RMDIR: Remove a Directory
15. RENAME: Rename a File or Directory
16. LINK: Create Link to an object
17. READDIR: Read From Directory
18. READDIRPLUS: Extended read from directory
19. FSSTAT: Get dynamic file system information
20. FSINFO: Get static file system Information
21. PATHCONF: Retrieve POSIX information
22. COMMIT: Commit cached data on a server to

stable storage
10

NFS Architecture

Virtual file system

Client kernel

Local
FS

Local
FS

NFS
client

Buffer cache

Virtual file system

Local
FS

Local
FS

NFS
server

Buffer cache

NFS Server

Network

11

NFS Client Caching Issues
u  Consistency among multiple client caches

l  Client cache contents may not be up-to-date
l  Multiple writes can happen simultaneously

u  Solutions
l  Expiration

•  Read-only file and directory data (expire in 60 seconds)
•  Data written by the client machine (write back in 30 seconds)

l  No shared caching
•  A file can be cached at only one client cache

l  Network lock manager
•  Sequential consistency (one writer or N readers)

12

NFS Protocol Development
u  Version 2 issues

l  18 operations
l  Size: limit to 4GB file size
l  Write performance: server writes data synchronously
l  Several other issues

u  Version 3 changes (most products still use this)
l  22 operations
l  Size: increase to 64 bit
l  Write performance: WRITE and COMMIT
l  Fixed several other issues
l  Still stateless

u  Version 4 changes
l  42 operations
l  Solve the consistency issues
l  Security issues
l  Stateful

4

3

Topics

◆  What’s behind the file system: networked storage
hierarchy

◆  More on the file system abstraction
◆  File system protection

Physical storage

8

Revisit File System Abstractions
◆  Network file system

l  Map to local file systems
l  Exposes file system API
l  NFS, CIFS, etc

◆  Local file system
l  Implement file system abstraction on

block storage
l  Exposes file system API

◆  Volume manager
l  Logical volumes of block storage
l  Map to physical storage
l  RAID and reconstruction
l  Exposes block API

◆  Physical storage
l  Previous lectures

Volume Manager

Local File System

Network File System

Volume Manager
◆  Group multiple storage partitions into a logical volume

l  Virtualization of capacity and performance
◆  No need to deal with physical disk or sector numbers

◆  Read(vol#, block#, buf, n)
◆  Reliable block storage

l  Include RAID, tolerating device failures
l  Provide error detection at block level

◆  Remote abstraction
l  Block storage in the cloud
l  Remote volumes for disaster recovery
l  Remote mirrors can be split or merged for backups

◆  How to implement?
l  OS kernel: Windows, OSX, Linux, etc.
l  Storage subsystem: EMC, Hitachi, HP, IBM, NetApp

9 10

File versus Block Abstractions

Disk/Volume abstraction
◆  Block oriented
◆  Block numbers
◆  No protection among users of

the system
◆  Data might be corrupted if

machine crashes

◆  Support file systems, database
systems, etc.

File abstraction
◆  Byte oriented
◆  Named files
◆  Users protected from each

other
◆  Robust to machine failures

◆  Emulate block storage
interface

5

11

File Abstraction: File Structures

◆  Byte sequence
l  Read or write N bytes
l  Unstructured or linear

◆  Record sequence
l  Fixed or variable length
l  Read or write a number of

records
◆  Tree

l  Records with keys
l  Read, insert, delete a record

(typically using B-tree)
…

… … …

12

File Abstraction: File Types
◆  ASCII
◆  Binary data

l  Record
l  Tree
l  An Unix executable file

•  header: magic number, sizes, entry point, flags
•  text
•  data
•  relocation bits
•  symbol table

◆  Devices
◆  Character special files (to model terminals, printers)
◆  Block special files (to model disks)

◆  Everything else in the system

13

File Abstraction: File Operations

◆  Operations for “sequence of bytes” files
l  Create: create a file (mapping from a name to a file)
l  Delete: delete a file
l  Open: including authentication
l  Close: done with accessing a file
l  Seek: jump to a particular location in a file
l  Read: read some bytes from a file
l  Write: write some bytes to a file
l  A few more operations on directories: later

◆  Implementation challenges
l  Keep disk accesses low
l  Keep space overhead low

File system abstraction

u  Directory
l  Group of named files or subdirectories
l  Mapping from file name to file metadata location

u  Path
l String that uniquely identifies file or directory

l Ex: /cse/www/education/courses/
cse451/12au

u  Links
l  Hard link: link from name to metadata location
l  Soft link: link from name to alternate name

u  Mount
l  Mapping from name in one file system to root of another

6

File Access Patterns

◆  Sequential (the common pattern)
l  File data processed sequentially
l  Example: Editor writes out a file

◆  Random access
l  Access a block in file directly
l  Example: Read a message in an inbox file

◆  Keyed access
l  Search for a record with particular values
l  Usually not provided by today’s file systems
l  Examples: Database search and indexing

14 16

File System vs. Virtual Memory
◆  Similarity

l  Location transparency
l  Size "obliviousness"
l  Protection

◆  File system is easier than VM in some ways
l  File system mappings can be slow
l  Files are dense and mostly sequential, while page tables deal

with sparse address spaces and random accesses

◆  File system is more difficult than VM in some ways
l  Each layer of translation causes potential I/Os
l  Memory space for caching is never enough
l  File size range vary: many < 10k, some > GB
l  Implementation must be reliable

15

VM Page Table vs. File System Metadata
Page table
◆  Manage the mappings of an address

space
◆  Map virtual page # to physical page #
◆  Check access permission and illegal

addressing
◆  TLB does it all in one cycle

File metadata
◆  Manage the mappings of

files
◆  Map byte offset to disk

block address
◆  Check access permission

and illegal addressing
◆  Implemented in software,

may cause I/Os

3

Topics

◆  What’s behind the file system: Storage hierarchy
◆  More on file system abstraction
◆  File system protection

7

17

Protection: Policy vs. Mechanism

◆  Policy is about what
◆  Mechanism is about how
◆  A protection system is the mechanism to enforce a

security policy
l  Same set of choices, no matter what policies

◆  A security policy defines acceptable and unacceptable
behaviors. Examples:

•  A given user can only allocate 4GB of disk storage
•  No one but root can write to the password file
•  A user is not allowed to read others’ mail files

18

Protection Mechanisms
◆  Authentication

l  Identity check
•  Unix: password
•  Credit card: last 4 digits of credit card # + SSN + zipcode
•  Airport: driver’s license or passport

◆  Authorization
l  Determine if x is allowed to do y
l  Need a simple database

◆  Access enforcement
l  Enforce authorization decision
l  Must make sure there are no loopholes

19

Authentication

◆  Usually done with passwords
l  Relatively weak, because you must remember them

◆  Passwords are stored in an encrypted form
l  Use a “secure hash” (one way only)

◆  Issues
l  Passwords should be obscure, to prevent “dictionary

attacks”
l  Each user has many passwords

◆  Alternatives?

20

Protection Domain

◆  Once identity known, provides rules
l  E.g. what is Bob allowed to do?
l  E.g. who can do what to file A?

◆  Protection matrix: domains vs. resources

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W …

Domain 3 R … RW

8

21

By Columns: Access Control Lists (ACLs)

◆  Each object has a list of
<user, privilege> pairs

◆  ACL is simple, implemented in most systems
l  Owner, group, world

◆  Implementation considerations
l  Stores ACLs in each file
l  Use login authentication to identify
l  Kernel implements ACLs

◆  Any issues?

22

By Rows: Capabilities

◆  For each user, there is a capability list
l  A lists of <object, privilege> pairs

◆  Capabilities provide both naming and protection
l  Can only “see” an object if you have a capability

◆  Implementation considerations
l  Architecture support
l  Capabilities stored in the kernel
l  Capabilities stored in the user space in encrypted format

◆  Issues?

23

Access Enforcement

◆  Use a trusted party to
l  Enforce access controls
l  Protect authorization information

◆  Kernel is the trusted party
l  This part of the system can do anything it wants
l  If there is a bug, the entire system could be destroyed
l  Want it to be as small & simple as possible

◆  Security is only as strong as the weakest link in the
protection system

24

Some Easy Attacks

◆  Abuse of valid privilege
l  On Unix, super-user can do anything

•  Read your mail, send mail in your name, etc.
l  If you delete the code for COS318 project 5, your partner is not

happy
◆  Spoiler/Denial of service (DoS)

l  Use up all resources and make system crash
l  Run shell script to: “while(1) { mkdir foo; cd foo; }”

◆  Listener
l  Passively watch network traffic

9

No Perfect Protection System

◆  Cannot prevent bad things, can only make it
difficult to do them

◆  There are always ways to defeat protection
l  burglary, bribery, blackmail, bludgeoning, etc.

◆  Every system has holes

25 26

Summary

◆  Storage hierarchy can be complex
l  Reliability, security, performance and cost
l  Many things are hidden

◆  Key storage layers above hardware
l  Volume or block storage
l  Local file system
l  Network file system

◆  Protection
l  ACL is the default in file systems
l  More protection is needed in the cloud

