
1

COS 318: Operating Systems

I/O Device Interactions and
Drivers

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Topics

u  So far:
l  Management of CPU and concurrency
l  Management of main memory and virtual memory

u  Next: Management of the I/O system
l  Interacting with I/O devices
l  Device drivers
l  Storage Devices

u  Then, File Systems
l  File System Structure
l  Naming and Directories
l  Efficiency/Performance
l  Reliability and Protection

2

3

Input and Output

u  A computer
l  Computation (CPU, memory hierarchy)
l  Move data into and out of a system (locketween I/O devices

and memory hierarchy)
u  Challenges with I/O devices

l  Different categories with different characteristics: storage,
networking, displays, keyboard, mouse ...

l  Large number of device drivers to support
l  Device drivers run in kernel mode and can crash systems

u  Goals of the OS
l  Provide a generic, consistent, convenient and reliable way to

access I/O devices
l  Achieve potential I/O performance in a system

4

Revisit Hardware

u  Compute hardware
l  CPU cores and caches
l  Memory
l  I/O
l  Controllers and logic

u  I/O Hardware
l  I/O bus or interconnect
l  I/O device
l  I/O controller or adapter

•  Often on parent board
•  Cable connects it to device
•  Often using standard interfaces: IDE,

SATA, SCSI, USB, FireWire…
•  Has registers for control, data signals
•  Processor gives commands and/or

data to controller to do I/O
•  Special I/O instructions (w. port addr.)

or memory mapped I/O

I/O bus

Network

CPU

Memory I/O bridge

CPU CPU CPU
$

CPU
Chip

2

I/O Hierarchy

u  As with memory, fast I/O with less “capacity” near CPU,
slower I/O with greater “capacity” further away

5

A typical PC bus structure

7

Performance Characteristics

u  Overhead
l  CPU time to initiate an operation

u  Latency
l  Time to transfer one bit
l  Overhead + time for 1 bit to reach

destination
u  Bandwidth

l  Rate at which subsequent bits are
transferred or reach destination

l  Bits/sec or Bytes/sec
u  In general

l  Different transfer rates
l  Abstraction of byte transfers
l  Amortize overhead over block of

bytes as transfer unit

Data transfer

Device Transfer rate
Keyboard 10Bytes/sec

Mouse 100Bytes/sec
… …

10GE NIC 1.2GBytes/sec

Initiate

Time

Interacting with Devices

u  A device has an interface, and an implementation
l  Interface exposed to external software, typically by device

controller
l  Implementation may be hardware, firmware, software

u  Mechanisms
l  Programmed I/O (PIO)
l  Interrupts
l  Direct Memory Access (DMA)

8

3

9

Programmed I/O

u  Example
l  RS-232 serial port

u  Simple serial controller
l  Status registers (ready, busy, …)
l  Data register

u  Output
CPU:
l  Wait until device is not “busy”
l  Write data to “data” register
l  Tell device “ready”
Device
l  Wait until “ready”
l  Clear “ready” and set “busy”
l  Take data from “data” register
l  Clear “busy”

CPU

Memory

Serial
controller

I/O Bus

Busy Ready …
Data

Polling in Programmed I/O

u  Wait until device is not “busy”
l  A polling loop
l  May also poll to wait for device to complete its work

u  Advantages
l  Simple

u  Disadvantage
l  Slow
l  Waste CPU cycles

u  Example
l  If a device runs 100 operations / second, CPU may need to

wait for 10 msec or 10,000,000 CPU cycles (1Ghz CPU)

10

11

Interrupt-Driven Device
u  Allows CPU to avoid polling
u  Example: Mouse
u  Simple mouse controller

l  Status registers (done, int, …)
l  Data registers (ΔX, ΔY, button)

u  Input
Mouse:
l  Wait until “done”
l  Store ΔX, ΔY, and button into

data registers
l  Raise interrupt
CPU (interrupt handler)
l  Clear “done”
l  Move ΔX, ΔY, and button into

kernel buffer
l  Set “done”
l  Call scheduler

CPU

Memory

Mouse
controller

I/O Bus

Done …
ΔX

ΔY

Int

Button

Interrupt Handling Revisited/Refined

u  Save more context
u  Mask interrupts if needed
u  Set up a context for interrupt service
u  Set up a stack for interrupt service
u  Acknowledge the interrupt controller, enable it if needed
u  Save context to PCB
u  Run the interrupt service
u  Unmask interrupts if needed
u  Possibly change the priority of the process
u  Run the scheduler

4

Another Problem

u  CPU has to copy data from memory to device
u  Takes many CPU cycles, esp for larger I/Os

u  Can we get the CPU out of the copying loop, so it can
do other things in parallel while data are being copied?

13

Direct Memory Access (DMA)

15

Direct Memory Access (DMA)
u  Example of disk
u  A simple disk adaptor

l  Status register (ready, …)
l  DMA command
l  DMA memory address and size
l  DMA data buffer

u  DMA Write
CPU:
l  Wait until DMA device is “ready”
l  Clear “ready”
l  Set DMAWrite, address, size
l  Set “start”
l  Block current thread/process
Disk adaptor:
l  DMA data to device

(size--; address++)
l  Interrupt when “size == 0”
CPU (interrupt handler):
l  Put the blocked thread/process into

ready queue
Disk: Move data to disk

CPU

Memory

Disk
adaptor

I/O Bus

Ready …

address size

Int

DMA buffer

DMA Command

Start

Data

Kernel

Data Data

Where Are these I/O “Registers?”

u  Explicit I/O “ports” for devices
l  Accessed by privileged

instructions (in, out)
u  Memory mapped I/O

l  A portion of physical memory
for each device

l  Advantages
•  Simple and uniform
•  CPU instructions can access

these “registers” as memory

l  Issues
•  These memory locations should

not be cached. Why?
•  Mark them not cacheable

u  Both approaches are used
16

I/O device
I/O device

…

Kernel
memory

User
memory

ALU/FPU

registers

Caches

Memory

Memory
Mapped

I/O

5

Device I/O port locations on PCs (partial) I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

19

Drivers

I/O Interface and Device Drivers

Rest of the
operating
system

Device
driver

Device
driver

. . .

Device
driver

Device
controller

Device
controller

. . .
Device

controller

Device

Device

Device

Device

Hardware Operating System

In
te

rr
up

t H
an

dl
in

g

I/O Interface and Device Drivers

u  I/O system calls encapsulate device behaviors in
generic classes

u  Device-driver layer hides differences among I/O
controllers from kernel

u  Devices vary in many dimensions
l  Character-stream or block
l  Sequential or random-access
l  Sharable or dedicated
l  Speed of operation
l  Read-write, read only, or write only

6

Example Kernel I/O Structure Characteristics of I/O Devices

23

What Does A Device Driver Do?

u  Provide “the rest of the OS” with APIs
l  Init, Open, Close, Read, Write, …

u  Interface with controllers
l  Commands and data transfers with hardware controllers

u  Driver operations
l  Initialize devices
l  Interpret outstanding requests
l  Manage data transfers
l  Accept and process interrupts
l  Maintain the integrity of driver and kernel data structures

24

Device Driver Operations

u  Init (deviceNumber)
l  Initialize hardware

u  Open(deviceNumber)
l  Initialize driver and allocate resources

u  Close(deviceNumber)
l  Cleanup, deallocate, and possibly turnoff

u  Device driver types
l  Character: variable sized data transfer
l  Block: fixed sized block data transfer
l  Terminal: character driver with terminal control
l  Network: streams for networking

7

25

Character and Block Interfaces

u  Character device interface (keyboard, mouse, ports)
l  read(deviceNumber, bufferAddr, size)

•  Reads “size” bytes from a byte stream device to “bufferAddr”
l  write(deviceNumber, bufferAddr, size)

•  Write “size” bytes from “bufferAddr” to a byte stream device

u  Block device interface (disk drives)
l  read(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “deviceAddr” to “bufferAddr”
l  write(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “bufferAddr” to “deviceAddr”
l  seek(deviceNumber, deviceAddress)

•  Move the head to the correct position
•  Usually not necessary

Network Devices

u  Different enough from the block & character devices to
have own interface

u  Unix and Windows/NT include socket interface
l  Separates network protocol from network operation

u  Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes)

Clocks and Timers

u  Provide current time, elapsed time, timer

u  if programmable interval time used for timings, periodic
interrupts

u  ioctl (on UNIX) covers odd aspects of I/O such as
clocks and timers

28

Unix Device Driver Entry Points
u  init()

l  Initialize hardware
u  start()

l  Boot time initialization (require system services)
u  open(dev, flag, id)and close(dev, flag, id)

l  Initialization resources for read or write and release resources
u  halt()

l  Call before the system is shutdown
u  intr(vector)

l  Called by the kernel on a hardware interrupt
u  read(…) and write() calls

l  Data transfer
u  poll(pri)

l  Called by the kernel 25 to 100 times a second
u  ioctl(dev, cmd, arg, mode)

l  special request processing

8

29

Synchronous and Asynchronous I/O

u  Synchronous I/O
l  Calling process waits for I/O call to return before doing anything
l  Blocking I/O

•  Read() or write() will block a user process until its completion
•  Easy to use and understand
•  OS overlaps synchronous I/O with another process

l  Nonblocking I/O
•  Return as much data (and count of it) as avaialble right away

u  Asynchronous I/O
l  Process runs while I/O executes
l  Let user process do other things before I/O completion
l  I/O completion will notify the user process

Synchronous Blocking Read

30

Application Kernel

syscall
Switch to Kernel context

block

HW Device

DMA
read

Driver Initiates
DMA read

Copy to
User buf

Interrupt

returnl

Switch to
user context

Unblock

31

Synchronous Blocking Read

u  A process issues a read call which executes a system call
u  System call code checks for correctness and buffer cache
u  If it needs to perform I/O, it will issue a device driver call
u  Device driver allocates a buffer for read and schedules I/O
u  Initiate DMA read transfer
u  Block the current process and schedule a ready process
u  Device controller performs DMA read transfer
u  Device sends an interrupt on completion
u  Interrupt handler wakes up blocked process (make it ready)
u  Move data from kernel buffer to user buffer
u  System call returns to user code
u  User process continues

Asynchronous Read

32

Application Kernel

aio_read
Switch to Kernel context

HW Device

DMA
read

Driver initiates
DMA read

Copy to
User buf

Interrupt

Do
other
work

aio_return

incomplete

aio_return

Complete

Complete

9

Asynchronous I/O

POSIX P1003.4 Asynchronous I/O interface functions:
(available in Solaris, AIX, Tru64 Unix, Linux 2.6,…)

u  aio_read: begin asynchronous read
u  aio_write: begin asynchronous write
u  aio_cancel: cancel asynchronous read/write requests
u  aio_error: retrieve Asynchronous I/O error status
u  aio_fsync: asynchronously force I/O completion, and sets

errno to ENOSYS
u  aio_return: retrieve status of Asynchronous I/O operation
u  aio_suspend: suspend until Asynchronous I/O completes
u  lio_listio: issue list of I/O requests

33 34

Why Buffering in Kernel?

u  Speed mismatch between the producer and consumer
l  Character device and block device, for example
l  Adapt different data transfer sizes (packets vs. streams)

u  DMA requires contiguous physical memory
l  I/O devices see physical memory
l  User programs use virtual memory

u  Spooling
l  Avoid deadlock problems

u  Caching
l  Reduce I/O operations

35

Other Device Driver Design Issues

u Statically install device drivers
l  Reboot OS to install a new device driver

u Dynamically download device drivers
l  No reboot, but use an indirection
l  Load drivers into kernel memory
l  Install entry points and maintain related data structures
l  Initialize the device drivers

Dynamic Binding of Device Drivers

u  Indirection
l  Indirect table for all

device driver entry points
u  Download a driver

l  Allocate kernel memory
l  Store driver code
l  Link up all entry points

u  Delete a driver
l  Unlink entry points
l  Deallocate kernel memory

36

Driver (dev 0)
Open:
Read:
Write:

Driver (dev 1)
Open:
Read:
Write:

open
read
write

open
read
write

Driver (dev 1)
Open:
Read:
Write:

Open(1,…)

10

37

Issues with Device Drivers

u  Flexible for users, ISVs and IHVs
l  Users can download and install device drivers
l  Vendors can work with open hardware platforms

u  Dangerous
l  Device drivers run in kernel mode
l  Bad device drivers can cause kernel crashes and introduce

security holes

u  Progress on making device driver more secure

u  How much of OS code is device drivers?

I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

Next: Kernel I/O Subsystem Kernel I/O subsystem: “Scheduling”

u  Some I/O request ordering via per-device queue
u  Some OSes try fairness

Device status table

11

Kernel I/O subsystem (contd.)
u  Buffering - store data in memory while transferring between devices

l  To cope with device speed mismatch
l  To cope with device transfer size mismatch (e.g., packets in networking)
l  To maintain “copy semantics”

•  Copy data from user buffer to kernel buffer

u  How to deal with address translation?
l  I/O devices see physical memory, but programs use virtual memory
l  E.g. DMA may require contiguous physical addresses

u  Caching - fast memory holding copy of data
l  Reduce need to go to devices, key to performance

u  Spooling - hold output for a device
l  If a device can serve only one request at a time, i.e., printing
l  Used to avoid deadlock problems

Error handling

u  OS can recover from disk read, device unavailable,
transient write failures

u  Most return an error no. or code when I/O request fails

u  System error logs hold problem reports

I/O protection

u  User process may accidentally or purposefully attempt
to disrupt normal operation via illegal I/O instructions

l  All I/O instructions defined to be privileged

l  I/O must be performed via system calls
•  Memory-mapped and I/O port memory locations must be

protected too

Life cycle of an I/O request

12

Kernel data structures

u  State info for I/O components, including open file tables,
network connections, character device state

u  Many complex data structures to track buffers, memory
allocation, “dirty” blocks

u  Some use object-oriented methods and message
passing to implement I/O

From User Request to Hardware Operations

u  Consider reading a file from disk for a process:
l  Determine device holding file
l  Translate name to device representation
l  Physically read data from disk into buffer
l  Make data available to requesting process
l  Return control to process

Another example: blocked read w. DMA
u  A process issues a read call which executes a system call
u  System call code checks for correctness and cache
u  If it needs to perform I/O, it will issues a device driver call
u  Device driver allocates a buffer for read and schedules I/O
u  Controller performs DMA data transfer, blocks the process
u  Device generates an interrupt on completion
u  Interrupt handler stores any data and notifies completion
u  Move data from kernel buffer to user buffer and wakeup blocked

process
u  User process continues

49

Summary

u  IO Devices
l  Programmed I/O is simple but inefficient
l  Interrupt mechanism supports overlap of CPU with I/O
l  DMA is efficient, but requires sophisticated software

u  Synchronous and Asynchronous I/O
l  Asynchronous I/O allows user code to perform overlapping

u  Device drivers
l  Dominate the code size of OS
l  Dynamic binding is desirable for many devices
l  Device drivers can introduce security holes
l  Progress on secure code for device drivers but completely

removing device driver security is still an open problem
u  Role of device-independent kernel software

