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Design Issues 

u  Discussed Address Translation (will refresh in context) 

u  Thrashing and working sets 
u  Backing store 
u  Multiple page sizes and PT entries 
u  Pinning/locking pages 
u  Zero pages 
u  Shared pages 
u  Copy-on-write 
u  Distributed shared memory 
u  Virtual memory in Unix and Linux 
u  Virtual memory in Windows 2000 
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Virtual Memory Design Goals 
u  Protection 

u  Virtualization 
l  Use disk to extend physical memory 
l  Make virtualized memory user friendly (0 to high address) 

u  Enabling memory sharing (libraries, communication) 

u  Efficiency 
l  Translation efficiency (TLB as cache) 
l  Access efficiency 

•  Access time = h ⋅ memory access time + ( 1 - h ) ⋅ disk access time 
•  E.g. Suppose memory access time = 100ns, disk access time = 10ms 
•  If h = 90%, VM access time is 1ms! 

u  Portability 

Recall Address translation: Base and Bound 
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◆  Pros: Simple, fast, cheap, safe, can relocate 
◆  Cons: 

●  Can’t keep program from accidentally overwriting its own code 
●  Can’t share code/data with other processes 
●  Can’t grow stack/heap as needed (stop program, change reg, …) 
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Recall Address Translation: Segmentation 

u  A segment is a contiguous region of virtual memory 
u  Every process has a segment table (in hardware) 

l  Entry in table oer segment 

u  Segment can be located anywhere in physical memory 
l  Each segment has: start, length, access permission 

u  Processes can share segments 
l  Same start, length, same/different access permissions 
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•  Segments contiguous, but gaps in VM between them 
•  Segment table small, so stored on-CPU 

Segments Enable Copy-on-Write 

u  Idea of Copy-on-Write 
l  Child process inherits copy of parent’s address space on fork 
l  But don’t really want to make a copy of all data upon fork 
l  Would like to share as far as possible and make own copy 

only “on-demand”, i.e. upon a write 

u  Segments allow this to an extent 
l  Copy segment table into child, not entire address space 
l  Mark all parent and child segments read-only 
l  Start child process; return to parent 
l  If child or parent writes to a segment (e.g. stack, heap) 

•  Trap into kernel 
•  At this point, make a copy of the segment, and resume 

Segmentation 

u  Pros 
l  Can share code/data segments between processes 
l  Can protect code segment from being overwritten 
l  Can transparently grow stack/heap as needed 
l  Can detect if need to copy-on-write 

u  Cons 
l  Complex memory mgmt: need to find chunk of particular size 
l  May need to rearrange memory from time to time to make room 

for new segment or growing segment 
•  External fragmentation: wasted space between chunks 
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Recall Address Translation: Paging 

u  Manage memory in fixed size units, or pages 
u  Finding a free page is easy 

l  Effectively bitmap allocation: 0011111100000001100 
l  Each bit represents one physical page frame 

u  Every process has its own page table 
l  Stored in physical memory 
l  Hardware registers 

•  Pointer to page table start 
•  Page table length 

u  Recall fancier structures: segmentation+paging, multi-level PT 
l  Better for sparse virtual address spaces 
l  E.g. per-processor heaps, per-thread stacks, memory mapped files, 

dynamically linked libraries, … 
l  Don’t have fine-grain page table entries for “holes” 

Multilevel Page Table 
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Sharing and Copy on Write with Paging 

u  Can we share memory between processes? 
l  Entries in both page tables to point to same page frames 
l  Need core map of page frames to track which / how many 

processes are pointing to which page frames (e.g., reference 
count), so know when a a page is still “live” 

u  UNIX fork with copy on write 
l  Copy page table of parent into child process 
l  Mark all pages (in new and old page tables) as read-only 
l  Trap into kernel on write (in child or parent) 
l  Copy page 
l  Mark both as writeable 
l  Resume execution 
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Pinning (or Locking) Page Frames 

u  When do you need it? 
l  When DMA is in progress, you don’t want to page the pages out 

to avoid CPU from overwriting the pages 
u  Mechanism? 

l  A data structure to remember all pinned pages 
l  Paging algorithm checks the data structure to decide on page 

replacement 
l  Special calls to pin and unpin certain pages 
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Zeroing Pages 

u  Initilalize pages to all zero values 
l  Heap and static data are initialized 

u  How to implement? 
l  On the first page fault on a data page or stack page, zero it 
l  Or, have a special thread zeroing pages in the background 
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Shared Pages 

u PTEs from two processes share 
the same physical pages 
l  What use cases? 

u  Implementation issues 
l  What if you terminate a process 

with shared pages 
l  Paging in/out shared pages 
l  Pinning, unpinning shared pages 
l  Deriving the working set for a 

process with shared pages 
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Efficient address translation 

u  Recall translation lookaside buffer (TLB) 
l  Cache of recent virtual page -> physical page translations 
l  If cache hit, use translation 
l  If cache miss, walk (perhaps multi-level) page table 

u  Cost of translation = 
Cost of TLB lookup + 
Prob(TLB miss) * cost of page table lookup 

TLB and page table translation 
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TLB Performance 

u  What is the cost of a TLB miss on a modern processor? 
l  Cost of multi-level page table walk 
l  Software-controlled: plus cost of trap handler entry/exit 
l  Use additional caching principles: multi-level caching, etc 

Intel i7 
Processor 
Chip 

Intel i7 Memory hierarchy 

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core 

Problem with Translation Slowdown 

u  What is the cost of a first level TLB miss? 
l  Second level TLB lookup 

u  What is the cost of a second level TLB miss? 
l  x86: 2-4 level page table walk  

u  Problem: Do we need to wait for the address translation 
in order to look up the caches (for code and data)? 

Virtually vs. Physically Addressed Caches 

u  It can be too slow to first access TLB to find physical 
address, then look up address in the cache 

u  Instead, first level cache is virtually addressed 

u  In parallel with cache lookup using virtual address, 
access TLB to generate physical address in case of a 
cache miss 
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Virtually addressed caches 
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When do TLBs work/not work? 

u  Video Frame 
Buffer: 32 bits x 
1K x 1K = 4MB 

Video Frame Buffer
Page#

0

1

2

3

1021

1022

1023

Superpages 

u  On many systems, TLB entry can be 
l  A page 
l  A superpage: a set of contiguous pages 

u  x86: superpage is a set of pages in one page table 
l  x86 TLB entries 

•  4KB 
•  2MB 
•  1GB 
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When do TLBs Work/Not Work, Part 2 

u  What happens when the OS changes the permissions 
on a page? 
l  For demand paging, copy on write, zero on reference, … 

u  TLB may contain old translation 
l  OS must ask hardware to purge TLB entry 

u  On a multicore: TLB shootdown 
l  OS must ask each CPU to purge TLB entry 

When do TLBs Work/Not Work, Part 3 

u  What happens on a context switch? 
l  Keep using TLB? 
l  Flush TLB? 

u  Solution: Tagged TLB 
l  Each TLB entry has process ID 
l  TLB hit only if process ID matches current process 
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Aliasing 

u  Alias: two (or more) virtual cache entries that refer to the 
same physical memory 
l  A consequence of a tagged virtually addressed cache! 
l  A write to one copy needs to update all copies 

u  Typical solution 
l  Keep both virtual and physical address for each entry in 

virtually addressed cache 
l  Lookup virtually addressed cache and TLB in parallel 
l  Check if physical address from TLB matches multiple entries, 

and update/invalidate other copies 



8 

29 

TLB Consistency Issues 

u  “Snoopy” cache protocols (hardware) 
l  Maintain consistency with DRAM, even when DMA happens 

u  Consistency between DRAM and TLBs (software) 
l  You need to flush related TLBs whenever changing a page 

table entry in memory 
u  TLB “shoot-down” 

l  On multiprocessors/multicore, when you modify a page table 
entry, need to flush all related TLB entries on all processors/
cores 

TLB shootdown 
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Summary    
u  Must consider many issues 

l  Global and local replacement strategies 
l  Management of backing store 
l  Primitive operations 

•  Pin/lock pages 
•  Zero pages 
•  Shared pages 
•  Copy-on-write 

u  Real system designs are complex 


