
1

COS 318: Operating Systems

Virtual Memory Design Issues:
Address Translation

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Design Issues

u  Discussed Address Translation (will refresh in context)

u  Thrashing and working sets
u  Backing store
u  Multiple page sizes and PT entries
u  Pinning/locking pages
u  Zero pages
u  Shared pages
u  Copy-on-write
u  Distributed shared memory
u  Virtual memory in Unix and Linux
u  Virtual memory in Windows 2000

3

Virtual Memory Design Goals
u  Protection

u  Virtualization
l  Use disk to extend physical memory
l  Make virtualized memory user friendly (0 to high address)

u  Enabling memory sharing (libraries, communication)

u  Efficiency
l  Translation efficiency (TLB as cache)
l  Access efficiency

•  Access time = h ⋅ memory access time + (1 - h) ⋅ disk access time
•  E.g. Suppose memory access time = 100ns, disk access time = 10ms
•  If h = 90%, VM access time is 1ms!

u  Portability

Recall Address translation: Base and Bound

Base

Bound

Physical
Memory

Processor’s View Implementation

Virtual
Address

Virtual
Memory

Physical
Address

Base

Base+
Bound

Raise
Exception

Processor

Virtual
Address

Processor

◆  Pros: Simple, fast, cheap, safe, can relocate
◆  Cons:

●  Can’t keep program from accidentally overwriting its own code
●  Can’t share code/data with other processes
●  Can’t grow stack/heap as needed (stop program, change reg, …)

2

Recall Address Translation: Segmentation

u  A segment is a contiguous region of virtual memory
u  Every process has a segment table (in hardware)

l  Entry in table oer segment

u  Segment can be located anywhere in physical memory
l  Each segment has: start, length, access permission

u  Processes can share segments
l  Same start, length, same/different access permissions

Segmentation

Base Bound Access

Read

R/W

R/W

R/W

Segment Offset

Raise
Exception

Physical
Memory

ProcessRU·V View Implementation

Virtual
Address

Virtual
Memory

Physical Address

Base 3

Base+
Bound 3

Base 0

Base+
Bound 0

Base 1

Base+
Bound 1

Base 2

Base+
Bound 2

Processor
Virtual

Address
Segment Table

Processor

Code

Data

Heap

Stack

Stack

Data

Code

Heap

•  Segments contiguous, but gaps in VM between them
•  Segment table small, so stored on-CPU

Segments Enable Copy-on-Write

u  Idea of Copy-on-Write
l  Child process inherits copy of parent’s address space on fork
l  But don’t really want to make a copy of all data upon fork
l  Would like to share as far as possible and make own copy

only “on-demand”, i.e. upon a write

u  Segments allow this to an extent
l  Copy segment table into child, not entire address space
l  Mark all parent and child segments read-only
l  Start child process; return to parent
l  If child or parent writes to a segment (e.g. stack, heap)

•  Trap into kernel
•  At this point, make a copy of the segment, and resume

Segmentation

u  Pros
l  Can share code/data segments between processes
l  Can protect code segment from being overwritten
l  Can transparently grow stack/heap as needed
l  Can detect if need to copy-on-write

u  Cons
l  Complex memory mgmt: need to find chunk of particular size
l  May need to rearrange memory from time to time to make room

for new segment or growing segment
•  External fragmentation: wasted space between chunks

3

Recall Address Translation: Paging

u  Manage memory in fixed size units, or pages
u  Finding a free page is easy

l  Effectively bitmap allocation: 0011111100000001100
l  Each bit represents one physical page frame

u  Every process has its own page table
l  Stored in physical memory
l  Hardware registers

•  Pointer to page table start
•  Page table length

u  Recall fancier structures: segmentation+paging, multi-level PT
l  Better for sparse virtual address spaces
l  E.g. per-processor heaps, per-thread stacks, memory mapped files,

dynamically linked libraries, …
l  Don’t have fine-grain page table entries for “holes”

Multilevel Page Table

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

Sharing and Copy on Write with Paging

u  Can we share memory between processes?
l  Entries in both page tables to point to same page frames
l  Need core map of page frames to track which / how many

processes are pointing to which page frames (e.g., reference
count), so know when a a page is still “live”

u  UNIX fork with copy on write
l  Copy page table of parent into child process
l  Mark all pages (in new and old page tables) as read-only
l  Trap into kernel on write (in child or parent)
l  Copy page
l  Mark both as writeable
l  Resume execution

12

Pinning (or Locking) Page Frames

u  When do you need it?
l  When DMA is in progress, you don’t want to page the pages out

to avoid CPU from overwriting the pages
u  Mechanism?

l  A data structure to remember all pinned pages
l  Paging algorithm checks the data structure to decide on page

replacement
l  Special calls to pin and unpin certain pages

4

13

Zeroing Pages

u  Initilalize pages to all zero values
l  Heap and static data are initialized

u  How to implement?
l  On the first page fault on a data page or stack page, zero it
l  Or, have a special thread zeroing pages in the background

14

Shared Pages

u PTEs from two processes share
the same physical pages
l  What use cases?

u  Implementation issues
l  What if you terminate a process

with shared pages
l  Paging in/out shared pages
l  Pinning, unpinning shared pages
l  Deriving the working set for a

process with shared pages

Page table 2

vp#
v vp#

v vp#

pp#
pp#

pp#

. . .

v

Page table 1

vp#
v vp#

v vp#

pp#
pp#

pp#

. . .

v

Physical
pages

Efficient address translation

u  Recall translation lookaside buffer (TLB)
l  Cache of recent virtual page -> physical page translations
l  If cache hit, use translation
l  If cache miss, walk (perhaps multi-level) page table

u  Cost of translation =
Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and page table translation

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

5

17

TLB Performance

u  What is the cost of a TLB miss on a modern processor?
l  Cost of multi-level page table walk
l  Software-controlled: plus cost of trap handler entry/exit
l  Use additional caching principles: multi-level caching, etc

Intel i7
Processor
Chip

Intel i7 Memory hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core

Problem with Translation Slowdown

u  What is the cost of a first level TLB miss?
l  Second level TLB lookup

u  What is the cost of a second level TLB miss?
l  x86: 2-4 level page table walk

u  Problem: Do we need to wait for the address translation
in order to look up the caches (for code and data)?

Virtually vs. Physically Addressed Caches

u  It can be too slow to first access TLB to find physical
address, then look up address in the cache

u  Instead, first level cache is virtually addressed

u  In parallel with cache lookup using virtual address,
access TLB to generate physical address in case of a
cache miss

6

Virtually addressed caches

Physical
Memory

Virtual
Address

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Data

Hit Hit
Valid

Processor
Virtual
Cache

TLB Page
Table

Data

Data

Miss Miss Invalid

Offset

Physically addressed cache

Virtual
Address

Virtual
Address

Virtual
Address

Physical
Address

Frame Frame

Raise
Exception

Physical
Address

Data

Hit Hit
Valid

Processor
Virtual
Cache

TLB Page
Table

Physical
Cache

Physical
Memory

Data

Data
Hit

Data

Miss Miss

Miss

Invalid

Offset

When do TLBs work/not work?

u  Video Frame
Buffer: 32 bits x
1K x 1K = 4MB

Video Frame Buffer
Page#

0

1

2

3

1021

1022

1023

Superpages

u  On many systems, TLB entry can be
l  A page
l  A superpage: a set of contiguous pages

u  x86: superpage is a set of pages in one page table
l  x86 TLB entries

•  4KB
•  2MB
•  1GB

7

Superpages
Physical
Memory

Frame Offset

Physical
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table
Lookup

When do TLBs Work/Not Work, Part 2

u  What happens when the OS changes the permissions
on a page?
l  For demand paging, copy on write, zero on reference, …

u  TLB may contain old translation
l  OS must ask hardware to purge TLB entry

u  On a multicore: TLB shootdown
l  OS must ask each CPU to purge TLB entry

When do TLBs Work/Not Work, Part 3

u  What happens on a context switch?
l  Keep using TLB?
l  Flush TLB?

u  Solution: Tagged TLB
l  Each TLB entry has process ID
l  TLB hit only if process ID matches current process

Physical
Memory

Frame Offset

Physical
Address

Page
Frame

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Implementation

PageProcess ID Frame Access

Matching Entry

Process ID

Processor

Page Table
Lookup

Aliasing

u  Alias: two (or more) virtual cache entries that refer to the
same physical memory
l  A consequence of a tagged virtually addressed cache!
l  A write to one copy needs to update all copies

u  Typical solution
l  Keep both virtual and physical address for each entry in

virtually addressed cache
l  Lookup virtually addressed cache and TLB in parallel
l  Check if physical address from TLB matches multiple entries,

and update/invalidate other copies

8

29

TLB Consistency Issues

u  “Snoopy” cache protocols (hardware)
l  Maintain consistency with DRAM, even when DMA happens

u  Consistency between DRAM and TLBs (software)
l  You need to flush related TLBs whenever changing a page

table entry in memory
u  TLB “shoot-down”

l  On multiprocessors/multicore, when you modify a page table
entry, need to flush all related TLB entries on all processors/
cores

TLB shootdown

Processor 1 TLB

VirtualPage PageFrame Access

0x00530

Process
ID

=

=

0x0003 R/W

0x4OFF1 0x0012 R/W

Processor 2 TLB 0x00530=

=

0x0003 R/W

0x00010 0x0005 Read

Processor 3 TLB 0x4OFF1=

=

0x0012 R/W

0x00010 0x0005 Read

31

Summary
u  Must consider many issues

l  Global and local replacement strategies
l  Management of backing store
l  Primitive operations

•  Pin/lock pages
•  Zero pages
•  Shared pages
•  Copy-on-write

u  Real system designs are complex

