Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

introduction

cut property

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

context

Last updated on 11/14/17 5:16 AM

4.3 MINIMUM SPANNING TREES

introduction

cut property

context

edge-weighted graph API

Kruskal's algorithm

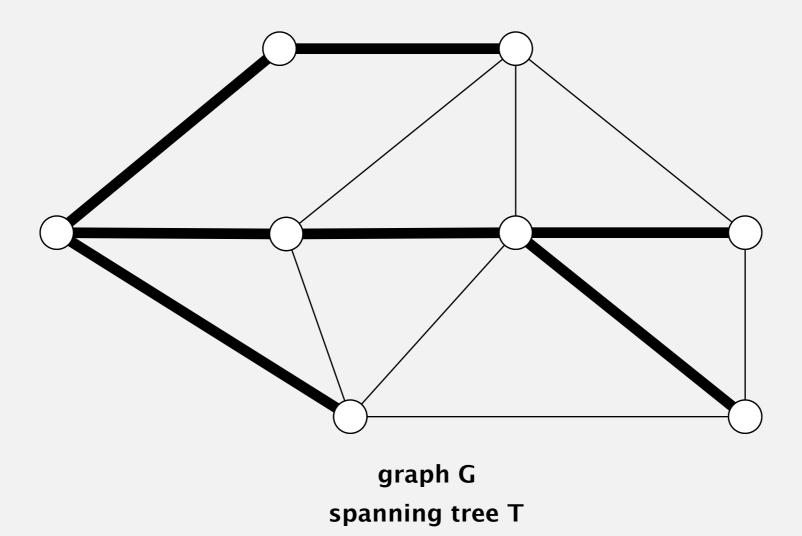
Prim's algorithm

Algorithms

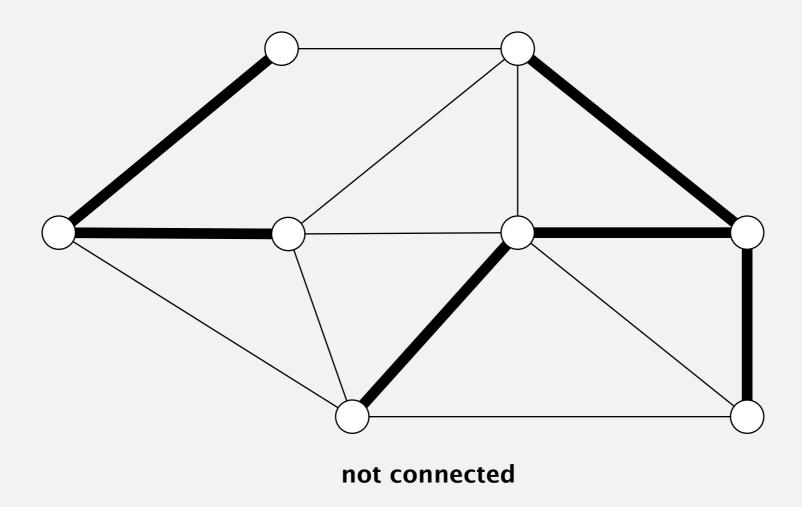
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

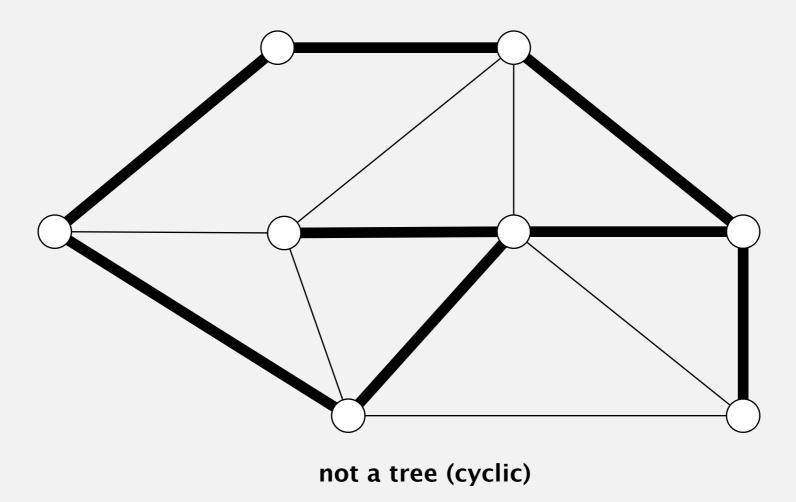
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.



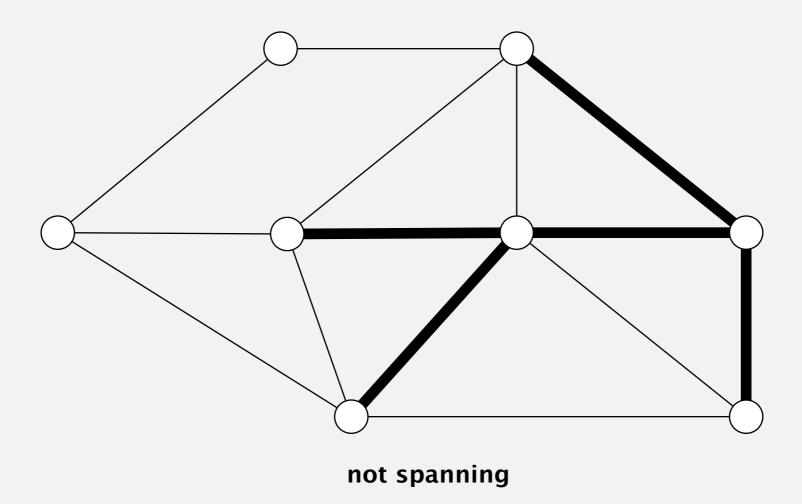
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.



- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

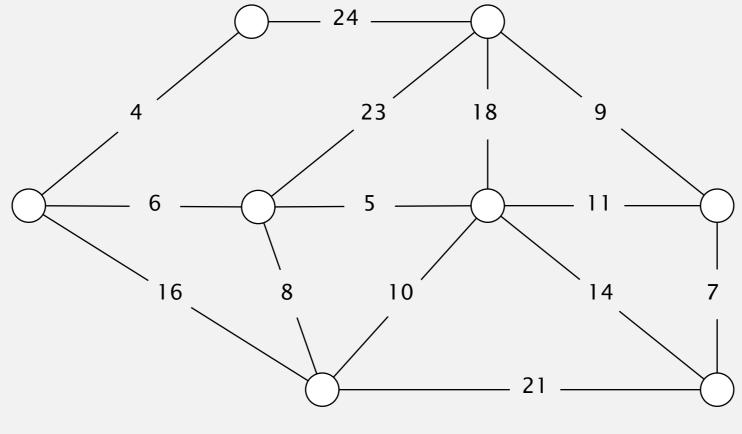


- A tree: connected and acyclic.
- Spanning: includes all of the vertices.



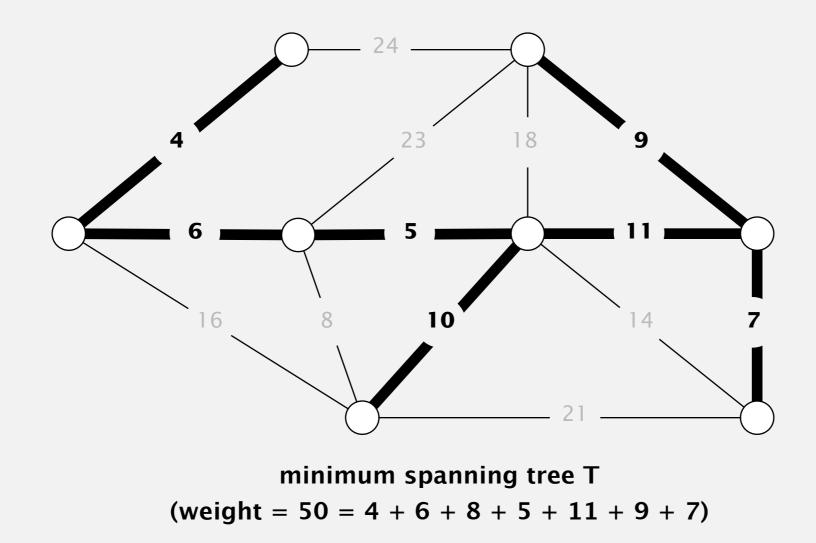
Minimum spanning tree problem

Input. Connected, undirected graph *G* with positive edge weights.



edge-weighted digraph G

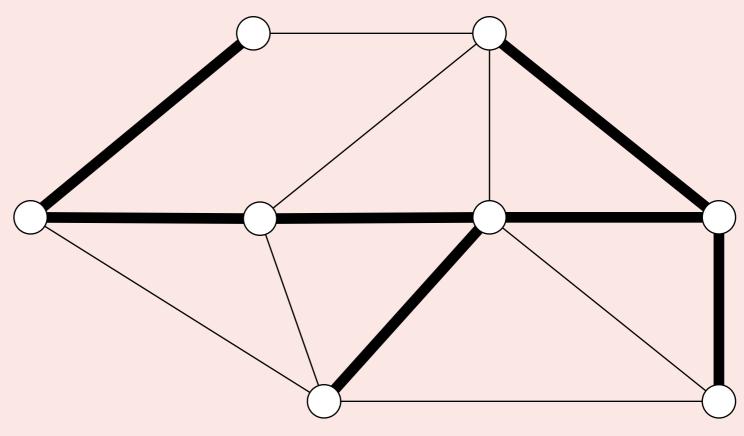
Input. Connected, undirected graph *G* with positive edge weights. Output. A spanning tree of minimum weight.



Brute force. Try all spanning trees?

Let *T* be a spanning tree of a connected graph *G* with *V* vertices. Which of the following statements are true?

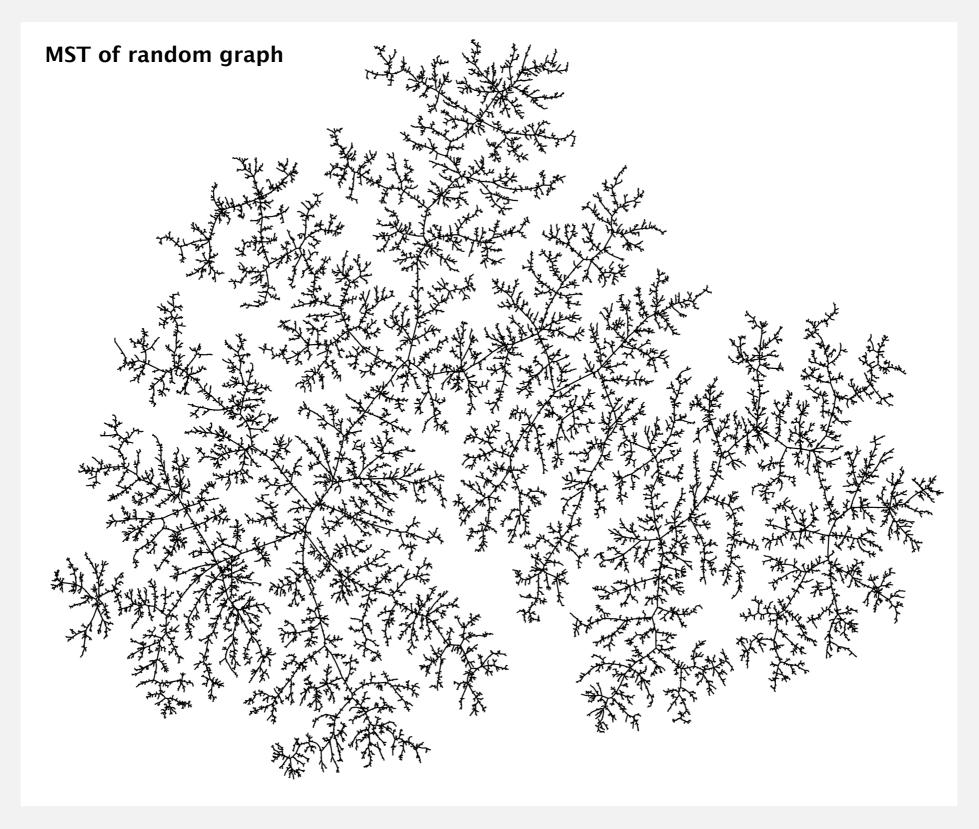
- **A.** *T* contains exactly V-1 edges.
- **B.** Removing any edge from T disconnects it.
- **C.** Adding any edge to *T* creates a cycle.
- **D.** All of the above.



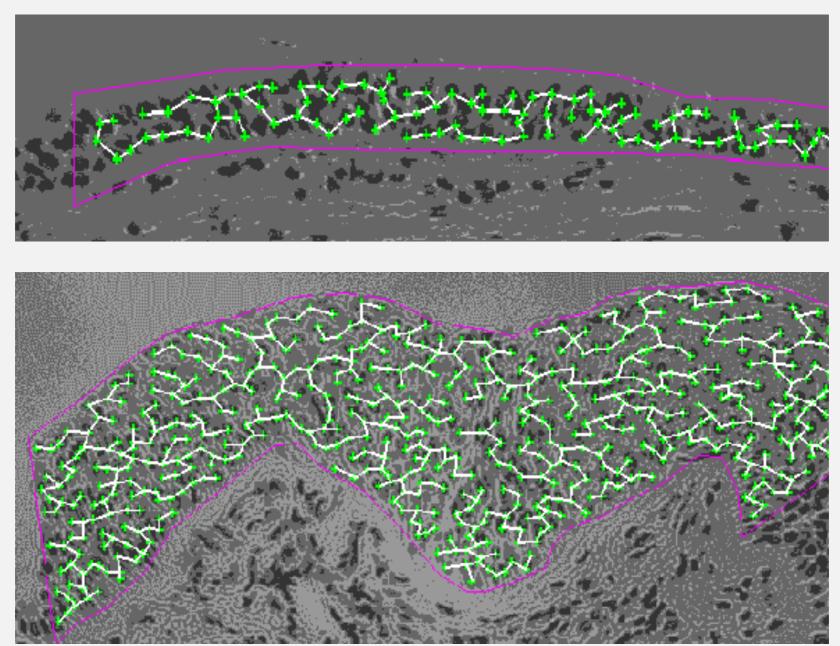
spanning tree T of graph G

http://www.flickr.com/photos/quasimondo/2695389651

Models of nature



Medical image processing



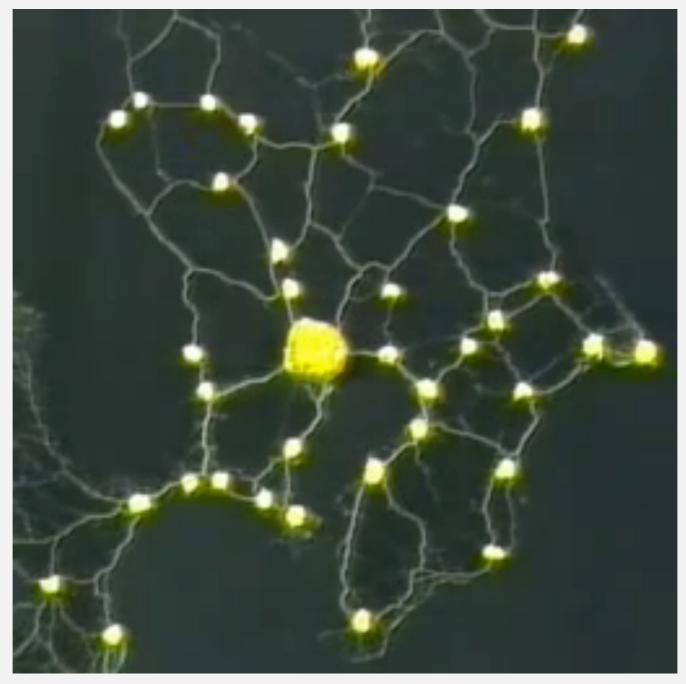
MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Slime mold grows network just like Tokyo rail system

Rules for Biologically Inspired Adaptive Network Design

Atsushi Tero,^{1,2} Seiji Takagi,¹ Tetsu Saigusa,³ Kentaro Ito,¹ Dan P. Bebber,⁴ Mark D. Fricker,⁴ Kenji Yumiki,⁵ Ryo Kobayashi,^{5,6} Toshiyuki Nakagaki^{1,6}*



https://www.youtube.com/watch?v=GwKuFREOgmo

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Network design (communication, electrical, hydraulic, computer, road).
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

4.3 MINIMUM SPANNING TREES

introduction

cut property

context

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

Algorithms

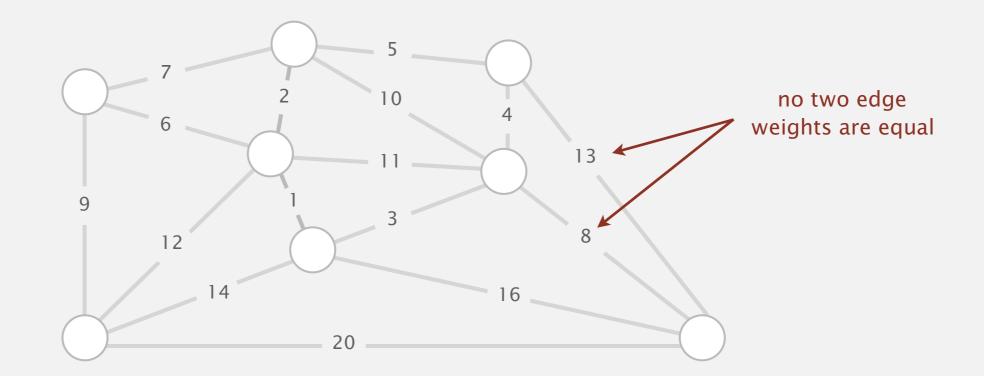
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

For simplicity, we assume:

- The graph is connected. \Rightarrow MST exists.
- The edge weights are distinct. \Rightarrow MST is unique. \leftarrow see Exercise 4.3.3

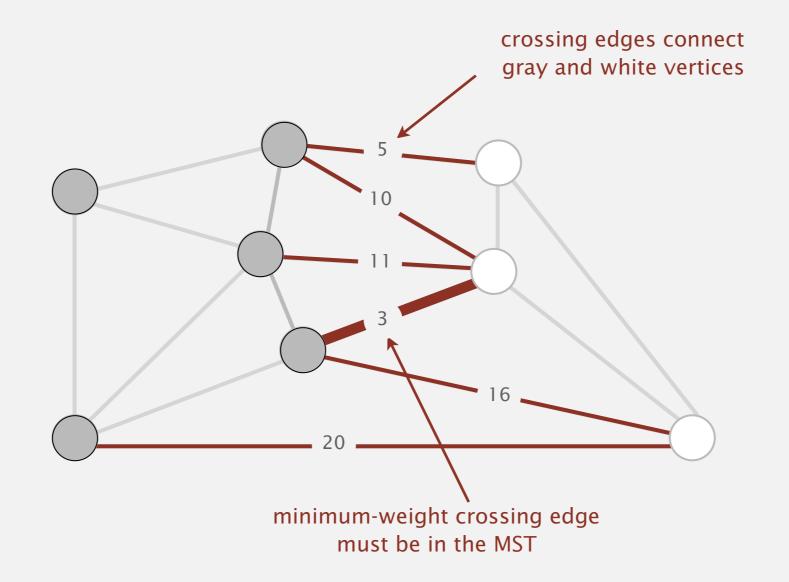
Note. Algorithms still work correctly even if duplicate edge weights.



Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.



4

Which is the min weight edge crossing the cut { 2, 3, 5, 6 }?

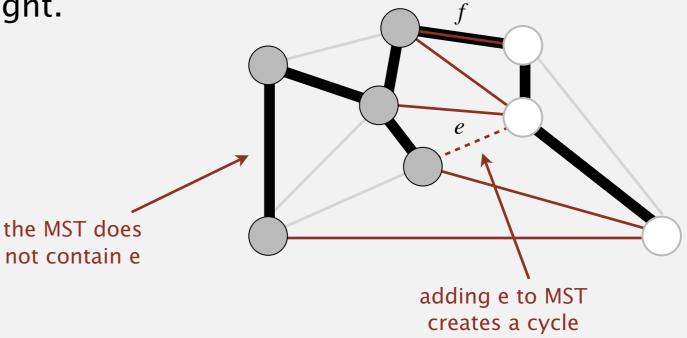
- Α. 0–7 (0.16) 0-7 0.16 Β. 2-3 (0.17) 2-3 0.17 1-7 0.19 С. 0-2 (0.26) 0-2 0.26 5-7 0.28 **D.** 5–7 (0.28) 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 3 1-2 0.36 5 4-7 0.37 7 0-4 0.38 2 6-2 0.40 0 3-6 0.52
 - 6-0 0.586-4 0.93

6

Def. A cut is a partition of a graph's vertices into two (nonempty) sets. Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge *e* is in the MST.

- Pf. Suppose *e* is not in the MST.
 - Adding *e* to the MST creates a cycle.
 - Some other edge *f* in cycle must be a crossing edge.
 - Removing *f* and adding *e* is also a spanning tree.
 - Since weight of *e* is less than the weight of *f*, that spanning tree has lower weight.
 - Contradiction.



4.3 MINIMUM SPANNING TREES

Algorithms

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

introduction

cut property

context

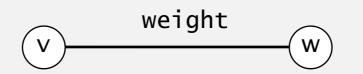
Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Edge abstraction needed for weighted edges.

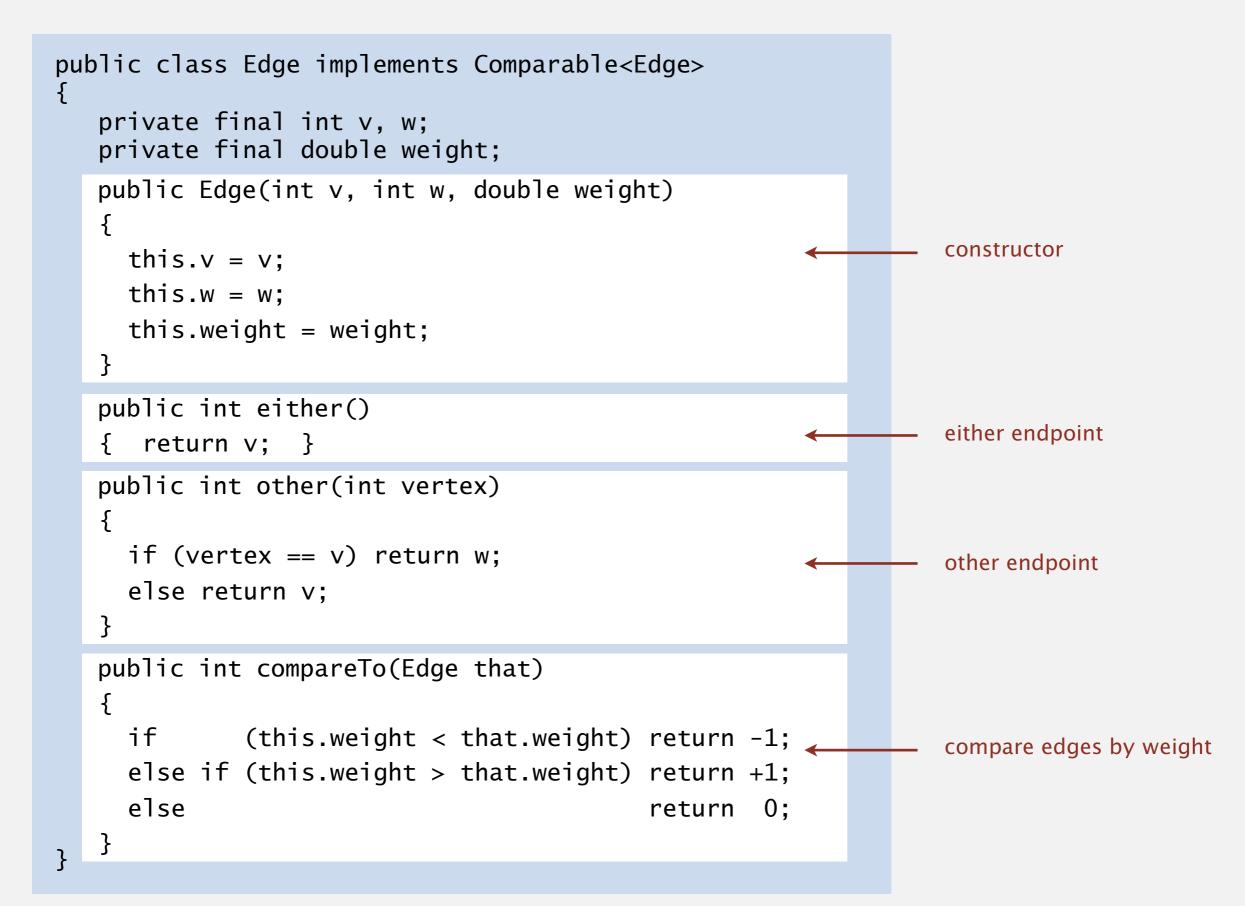
public class Edge implements Comparable<Edge>

	Edge(int v, int w, double weight)	create a weighted edge v-w
int	either()	either endpoint
int	other(int v)	the endpoint that's not v
int	compareTo(Edge that)	compare this edge to that edge
double	weight()	the weight
String	toString()	string representation



Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation



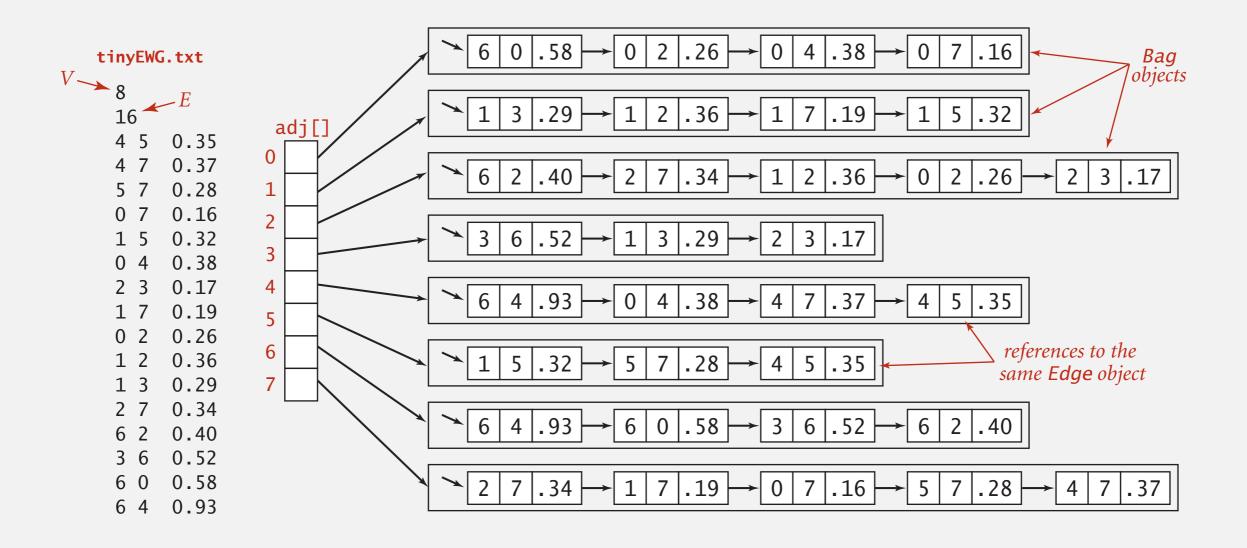
Edge-weighted graph API

public class	EdgeWeightedGraph	
	EdgeWeightedGraph(int V)	create an empty graph with V vertices
	EdgeWeightedGraph(In in)	create a graph from input stream
void	addEdge(Edge e)	add weighted edge e to this graph
Iterable <edge></edge>	adj(int v)	edges incident to v
Iterable <edge></edge>	edges()	all edges in this graph
int	V()	number of vertices
int	E()	number of edges
String	toString()	string representation

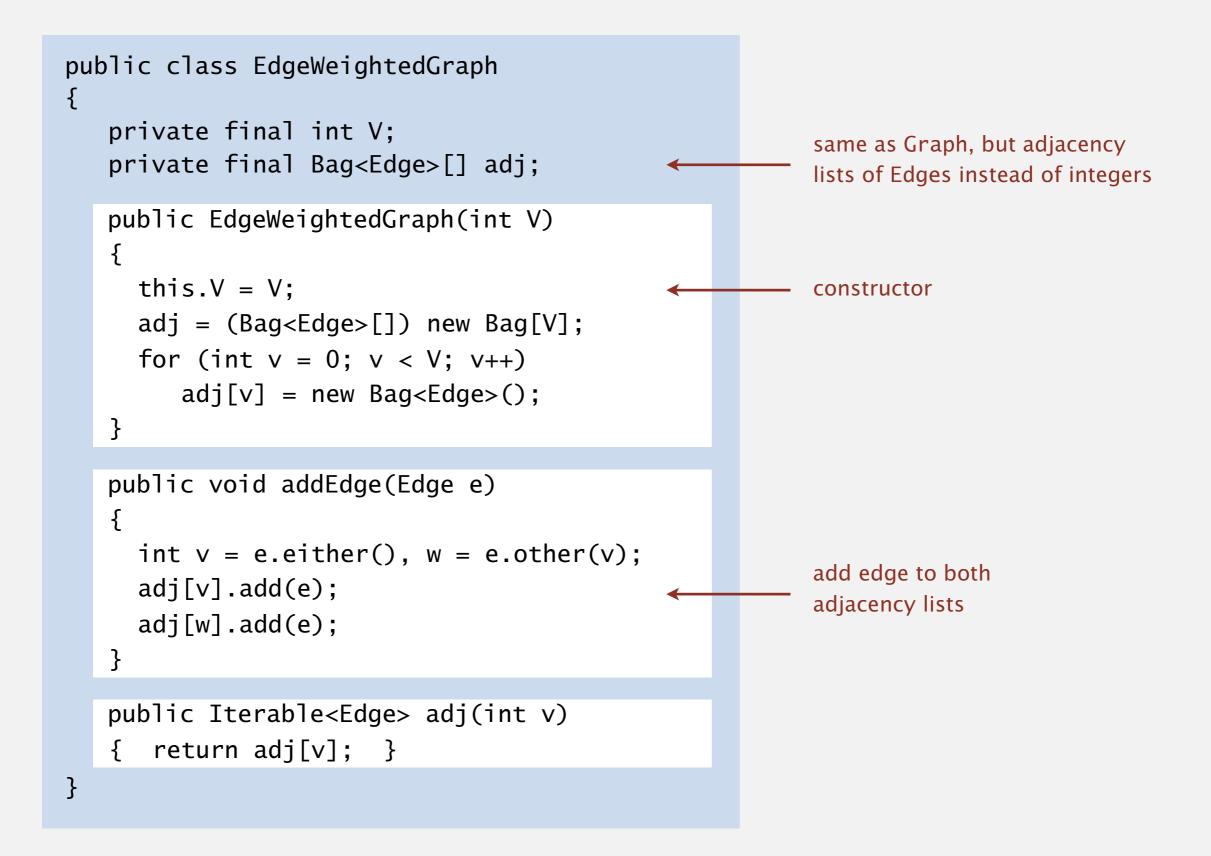
Conventions. Allow self-loops and parallel edges.

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.



Edge-weighted graph: adjacency-lists implementation



Q. How to represent the MST?

public class MST					
	MST(EdgeWeightedGraph G)	constructor			
Iterable <edge></edge>	edges()	edges in MST			
double	weight()	weight of MST			

4.3 MINIMUM SPANNING TREES

Algorithms

Kruskal's algorithm

Prim's algorithm

edge-weighted graph API

introduction

cut property

context

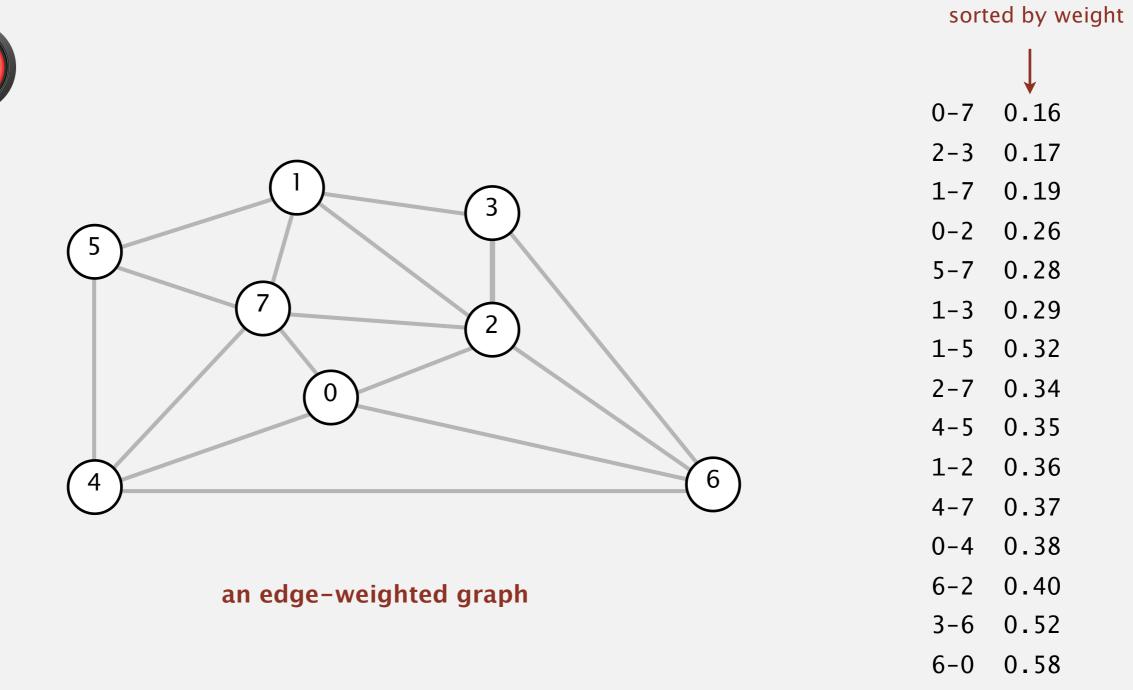
Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Kruskal's algorithm demo

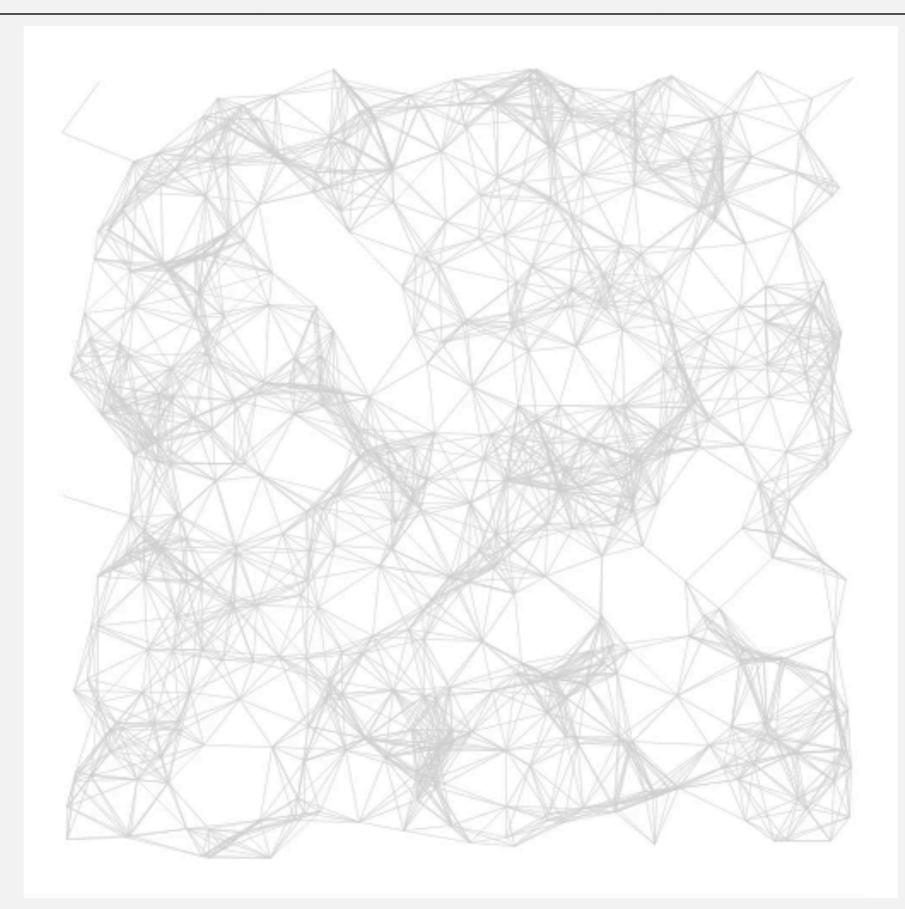
Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.



graph edges

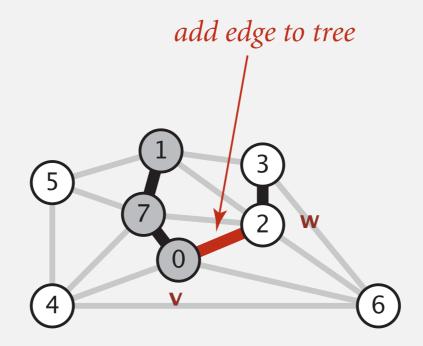
Kruskal's algorithm: visualization



Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. [Case 1] Kruskal's algorithm adds edge e = v-w to *T*.

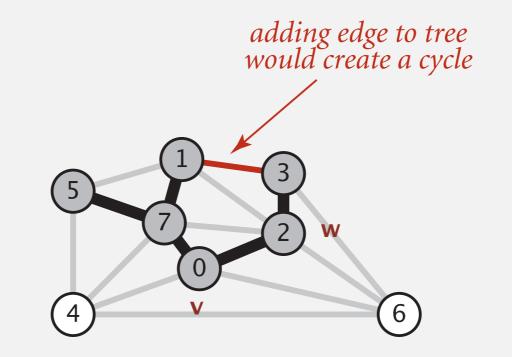
- Vertices *v* and *w* are in different connected components of *T*.
- Cut = set of vertices connected to v in T.
- By construction of cut, no edge crossing cut is in *T*.
- No edge crossing cut has lower weight. Why?
- Cut property \Rightarrow edge *e* is in the MST.



Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. [Case 2] Kruskal's algorithm discards edge e = v-w.

- From Case 1, all edges in *T* are in the MST.
- The MST can't contain a cycle. •

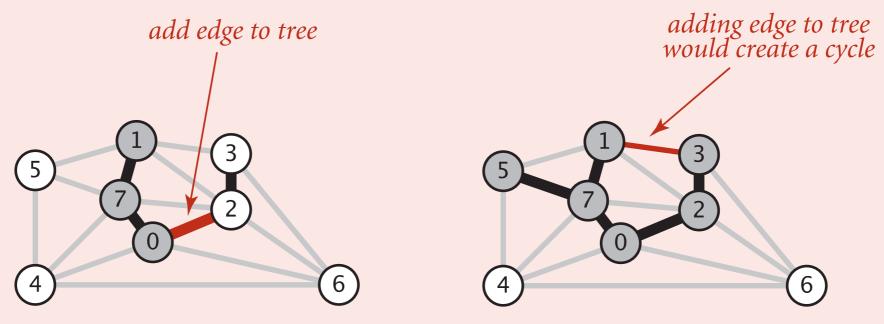


Kruskal's algorithm: implementation challenge

Challenge. Would adding edge *v*–*w* to tree *T* create a cycle? If not, add it.

How difficult to implement?

- **A.** 1
- **B.** $\log V$
- **C.** *V*
- **D.** E + V



Case 1: v and w in same component

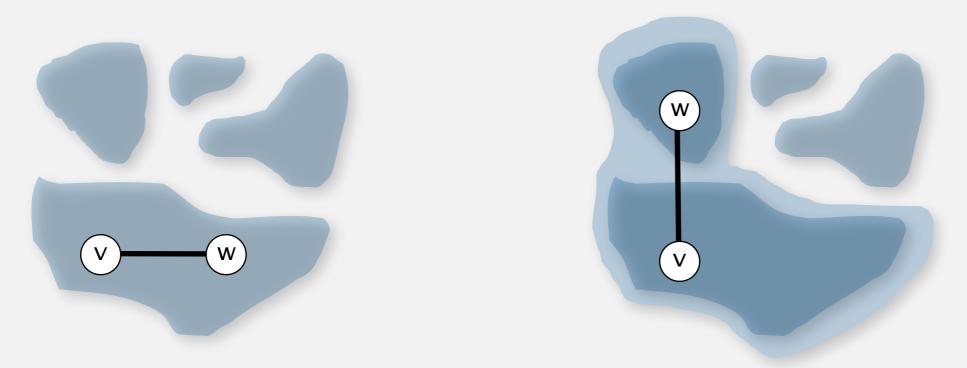
Case 2: v and w in different components

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge *v*–*w* to tree *T* create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

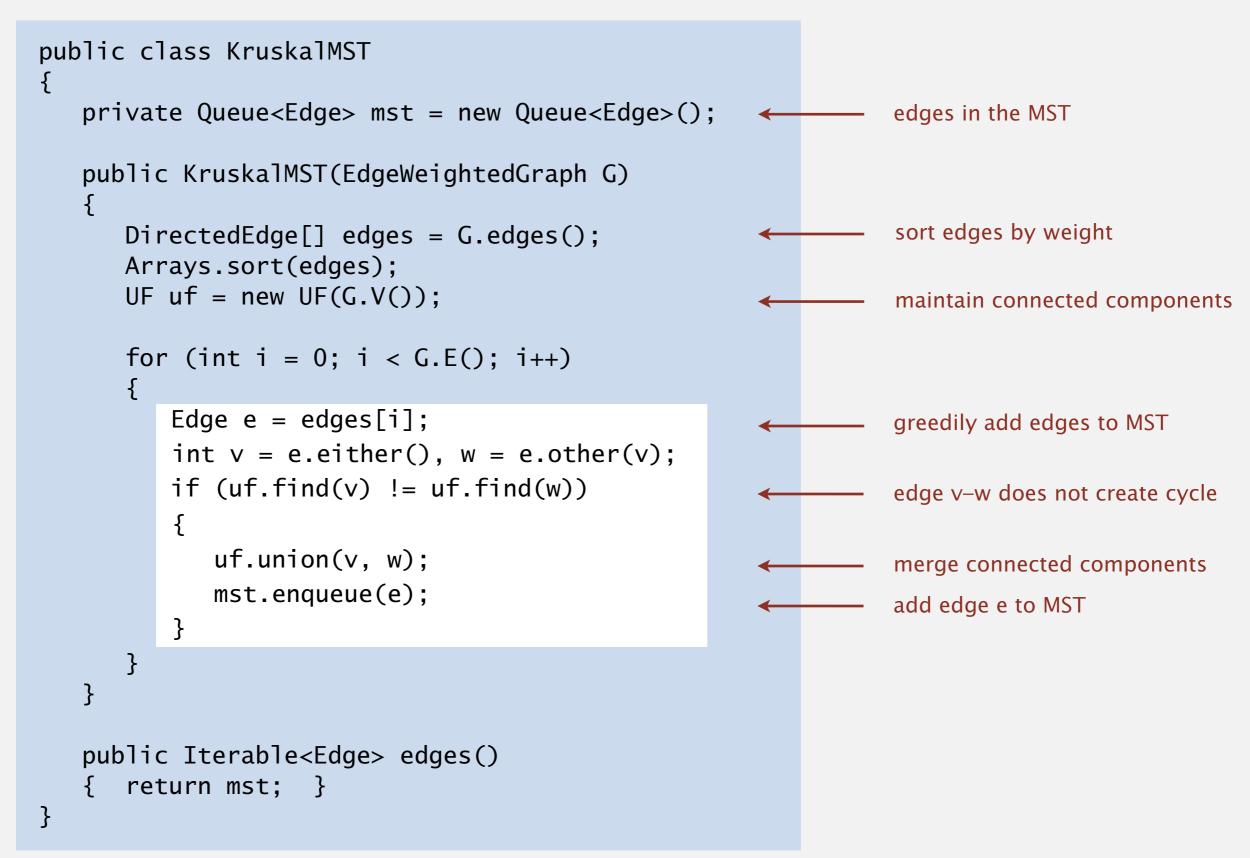
- Maintain a set for each connected component in T.
- If *v* and *w* are in same set, then adding *v*–*w* would create a cycle.
- To add *v*-*w* to *T*, merge sets containing *v* and *w*.



Case 2: adding v-w creates a cycle

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation



Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

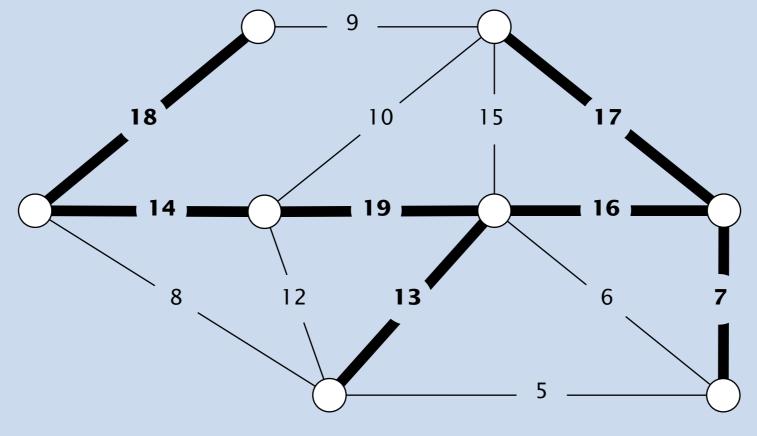
Pf.

operation	frequency	time per op
Sort	1	$E \log E$
UNION	V-1	$\log V^{\dagger}$
Find	2 E	$\log V^{\dagger}$

† using weighted quick union

Gordon Gecko (Michael Douglas) evangelizing the importance of greed (in algorithm design?) Wall Street (1986) Problem. Given an undirected graph *G* with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Running time. $E \log E$ (or better).



maximum spanning tree T (weight = 104)

4.3 MINIMUM SPANNING TREES

Algorithms

Prim's algorithm

Kruskal's algorithm

edge-weighted graph API

introduction

cut property

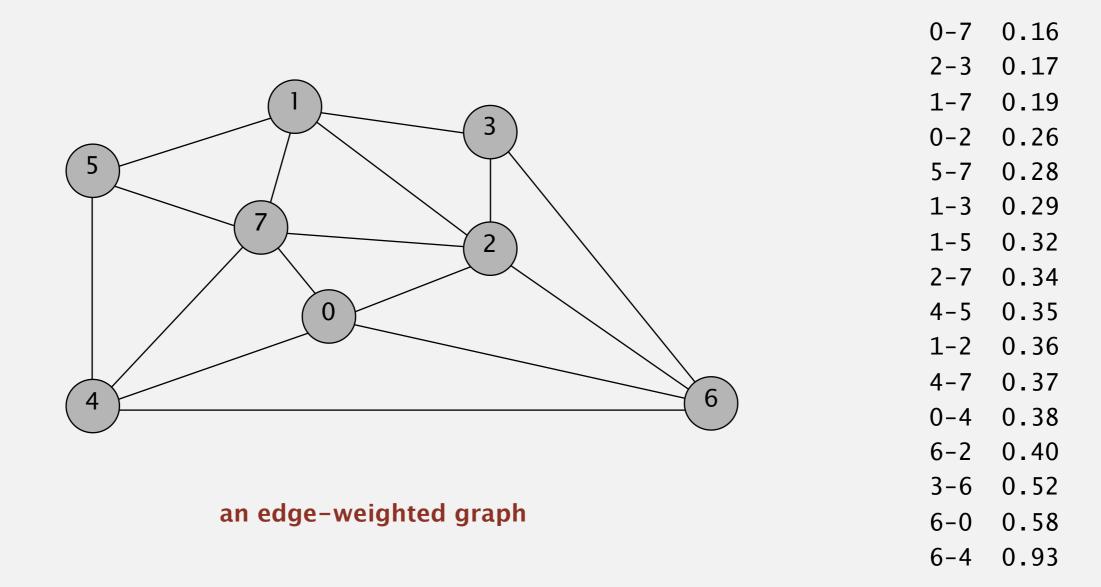
context

Robert Sedgewick \mid Kevin Wayne

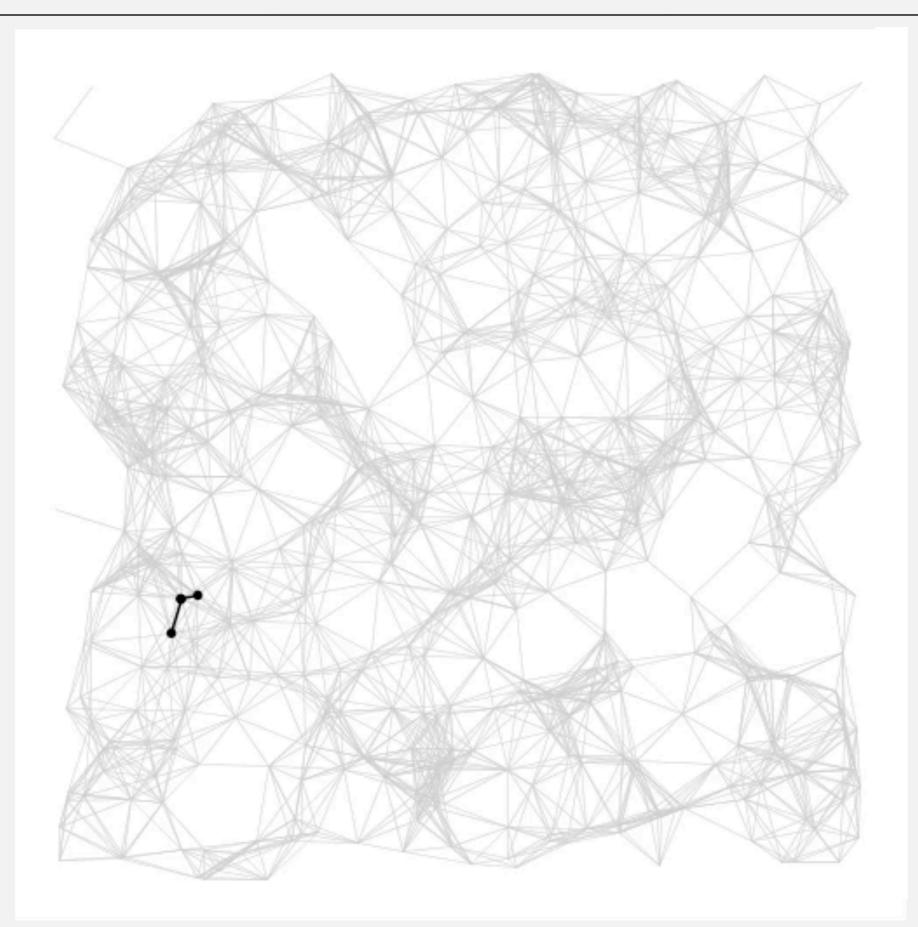
http://algs4.cs.princeton.edu

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.



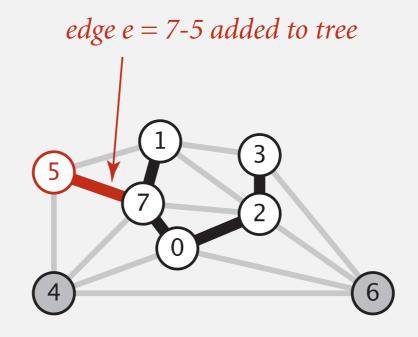
Prim's algorithm: visualization



Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959] Prim's algorithm computes the MST.

- **Pf.** Let *e* = min weight edge with exactly one endpoint in *T*.
 - Cut = set of vertices in *T*.
 - No crossing edge is in *T*.
 - No crossing edge has lower weight.
 - Cut property ⇒ edge *e* is in the MST.

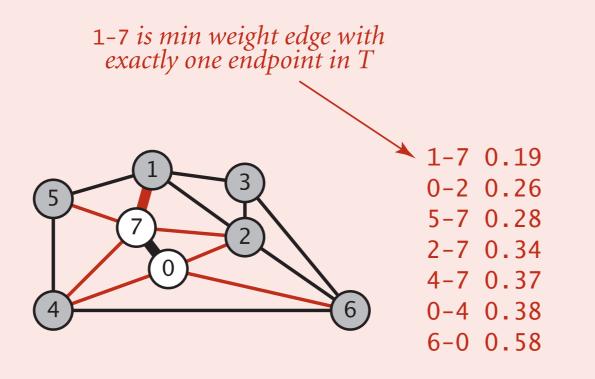


Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

How difficult to implement?

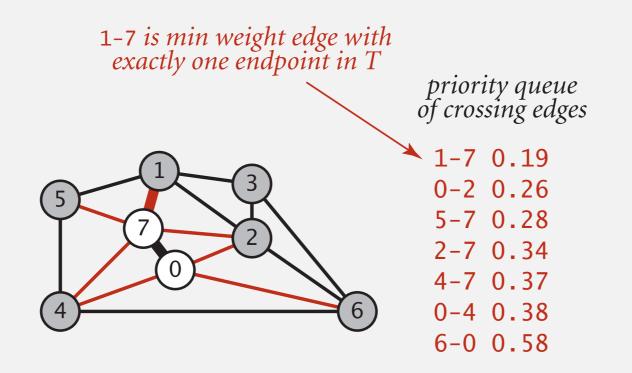
- **A.** 1
- **B.** $\log E$
- **C.** *V*
- **D.** *E*



Challenge. Find the min weight edge with exactly one endpoint in *T*.

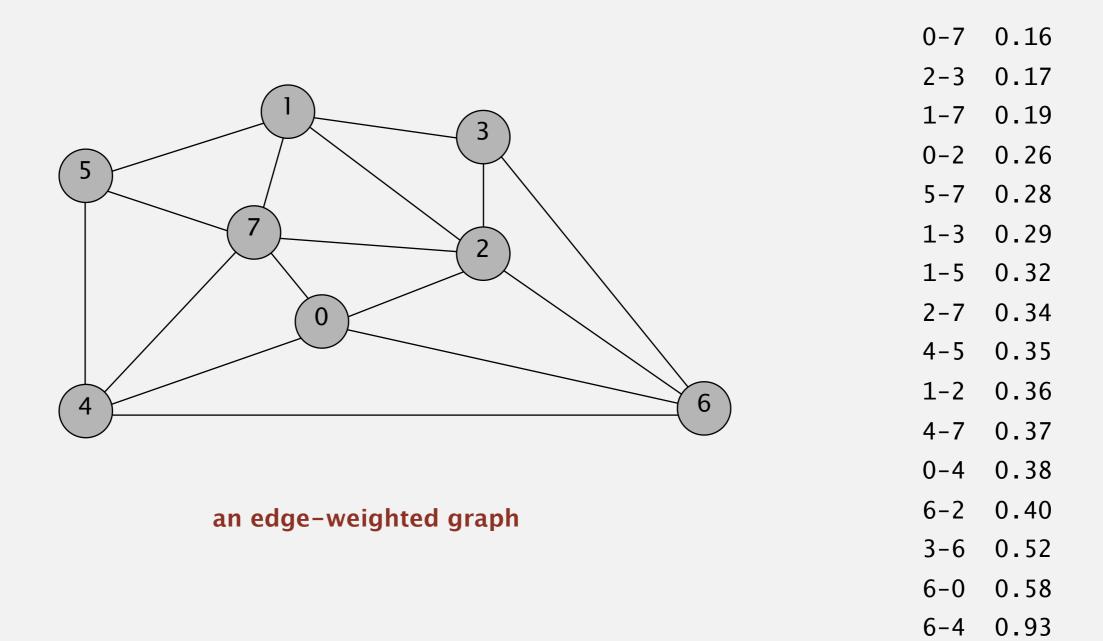
Lazy solution. Maintain a PQ of edges with (at least) one endpoint in *T*.

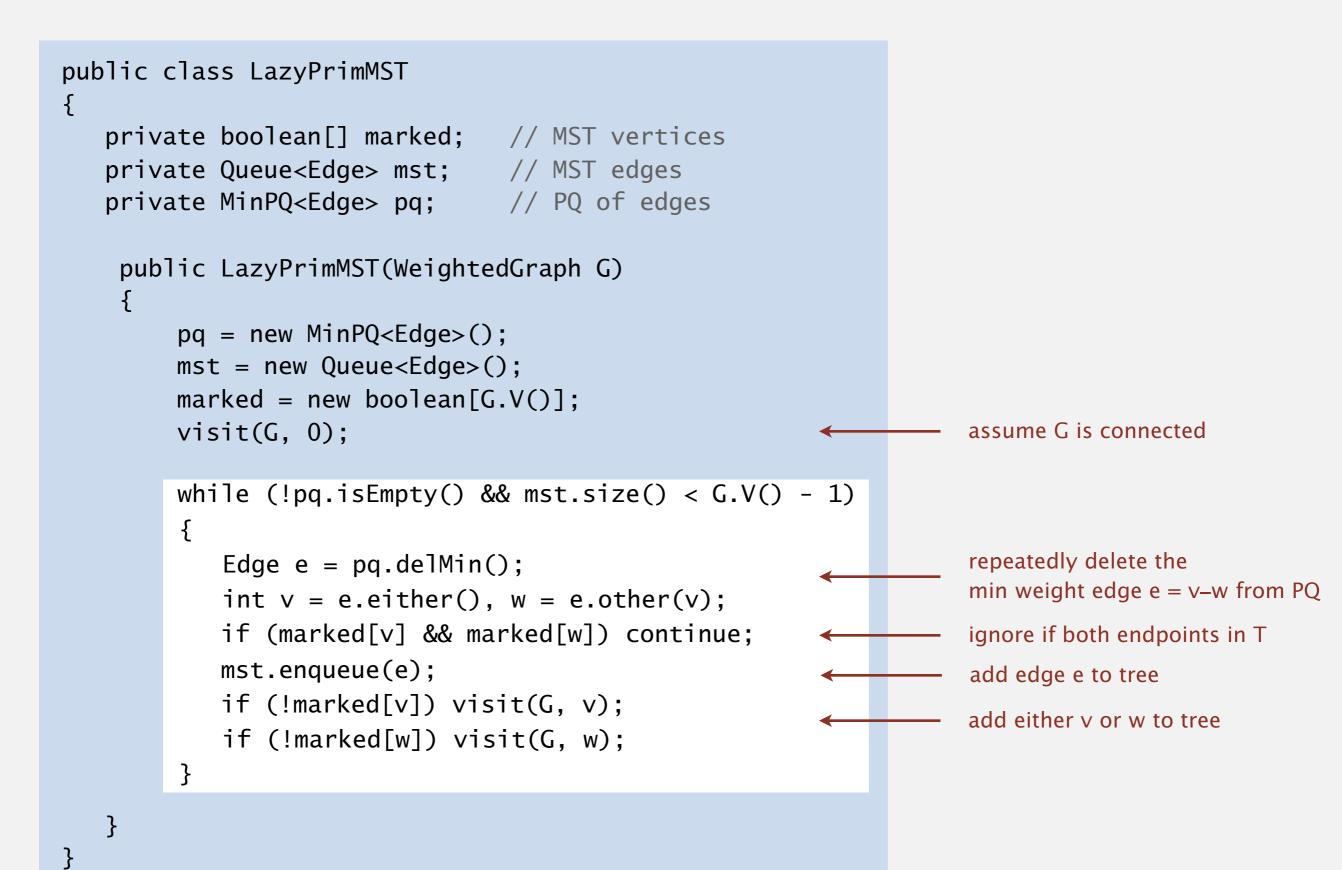
- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge e = v w to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let *w* be the unmarked vertex (not in *T*):
 - add *e* to *T* and mark *w*
 - add to PQ any edge incident to w (assuming other endpoint not in T)

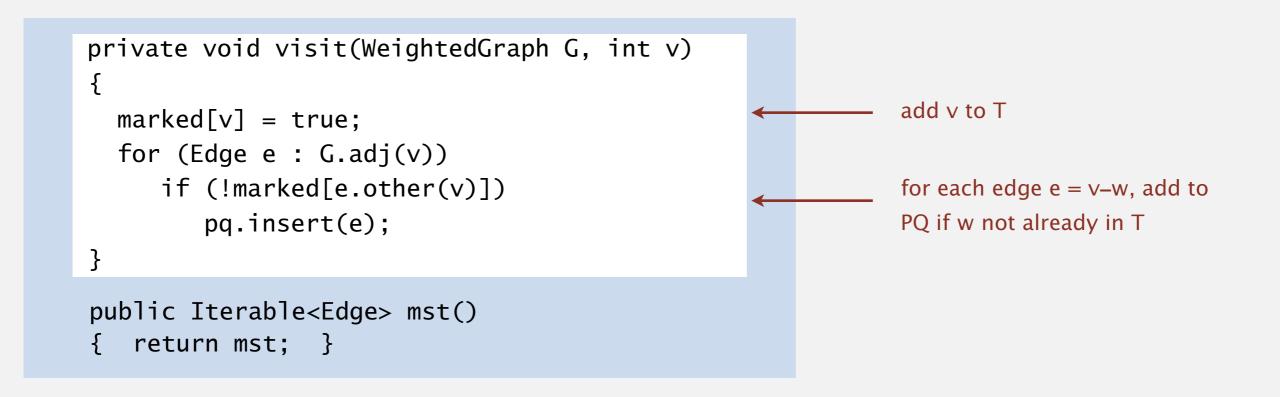


Prim's algorithm: lazy implementation demo

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.







Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

ninor defect

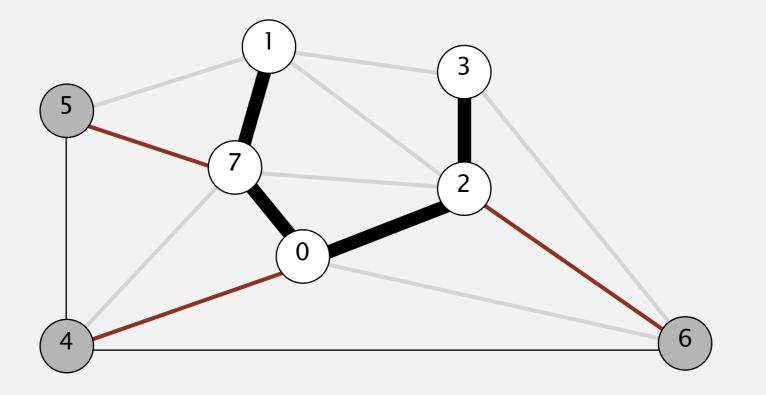
Pf.

operation	frequency	binary heap
Delete-Min	E	$\log E$
INSERT	E	$\log E$

Challenge. Find min weight edge with exactly one endpoint in *T*.

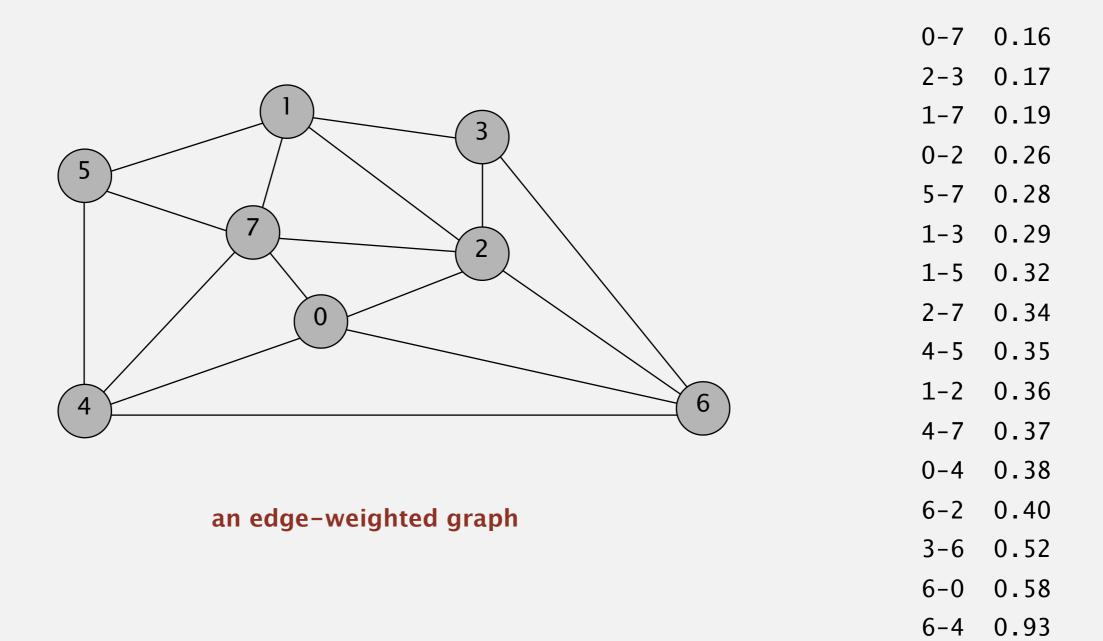
Observation. For each vertex *v*, need only lightest edge connecting *v* to *T*.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?



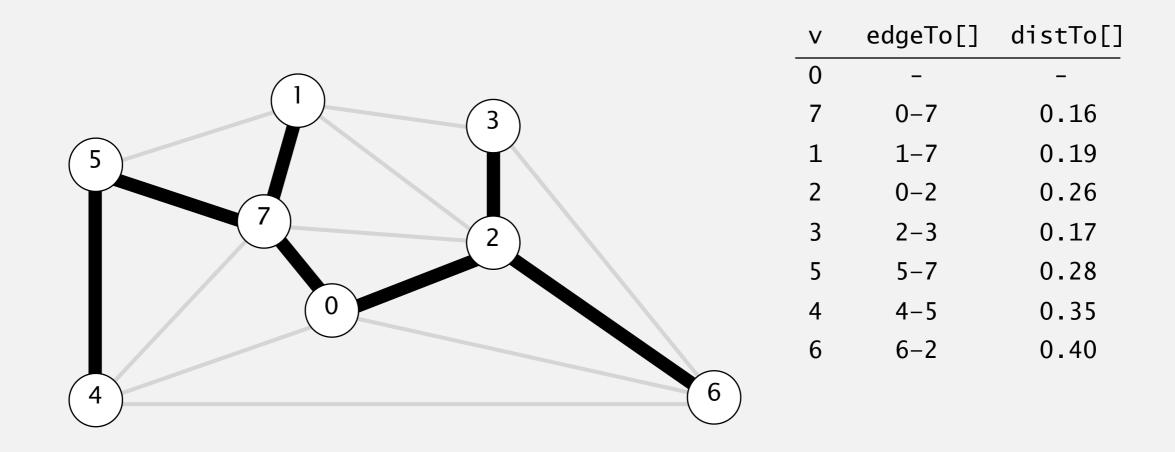
Prim's algorithm: eager implementation demo

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.



Prim's algorithm: eager implementation demo

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.



MST edges

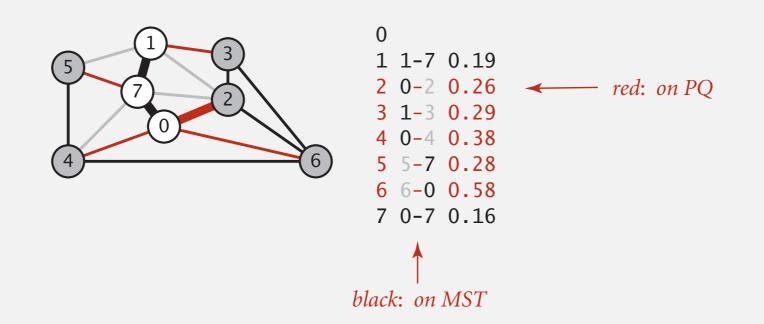
0-7 1-7 0-2 2-3 5-7 4-5 6-2

Challenge. Find min weight edge with exactly one endpoint in *T*.

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of lightest edge connecting v to T.

- Delete min vertex v; add its associated edge e = v w to T.
- Update PQ by considering all edges e = v x incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if v-x becomes lightest edge connecting x to T

PQ has at most one entry per vertex



Indexed priority queue

Associate an index between 0 and n-1 with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

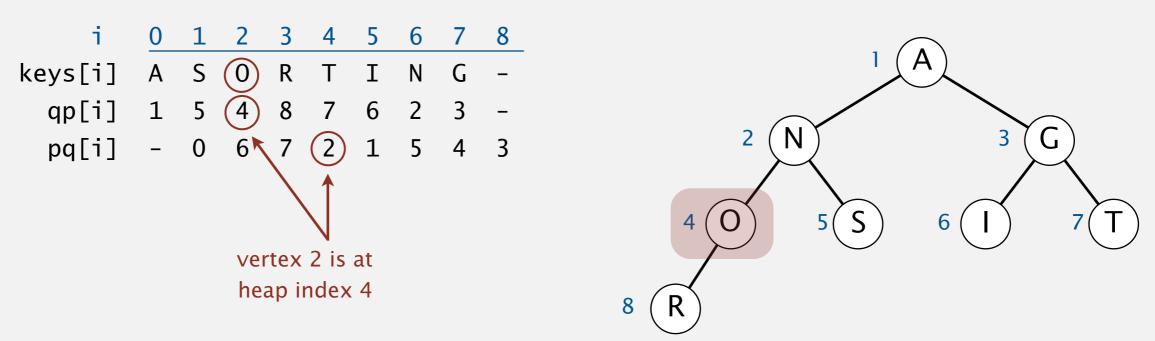
```
for Prim's algorithm,
n = V and index = vertex.
```

```
public class IndexMinPQ<Key extends Comparable<Key>>
                IndexMinPQ(int n)
                                                        create indexed PQ with indices 0, 1, \ldots, n-1
         void insert(int i, Key key)
                                                                 associate key with index i
          int delMin()
                                                     remove a minimal key and return its associated index
         void decreaseKey(int i, Key key)
                                                           decrease the key associated with index i
     boolean contains(int i)
                                                             is i an index on the priority queue?
     boolean isEmpty()
                                                                is the priority queue empty?
          int size()
                                                            number of keys in the priority queue
```

Indexed priority queue: implementation

Binary heap implementation. [see Section 2.4 of textbook]

- Start with same code as MinPQ.
- Maintain parallel arrays so that:
 - keys[i] is the priority of vertex i
 - qp[i] is the heap position of vertex i
 - pq[i] is the index of the key in heap position i
- Use swim(qp[i]) to implement decreaseKey(i, key).



decrease key of vertex 2 to C

Depends on PQ implementation: V INSERT, V DELETE-MIN, E DECREASE-KEY.

PQ implementation	Insert	Insert-Min	Decrease-Key	total
unordered array	1	V	1	V^2
binary heap	log V	log V	log V	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^{\dagger}$	1 †	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

4.3 MINIMUM SPANNING TREES

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

context

introduction

cut property

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

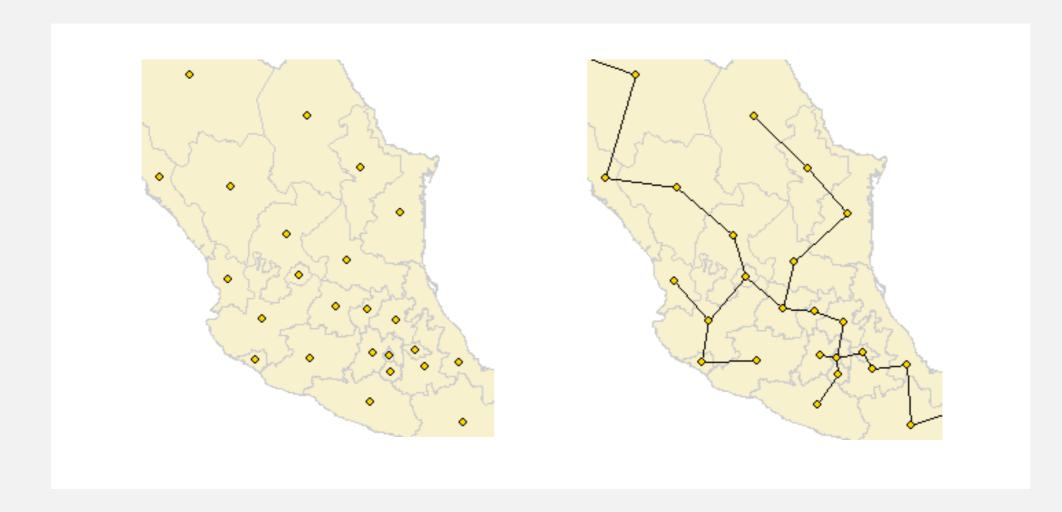
year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V, E + V \log V$	Fredman-Tarjan
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	$E \alpha(V)$	Chazelle
2002	optimal	Pettie-Ramachandran
20xx	E	???

deterministic compare-based MST algorithms

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan).

Euclidean MST

Given *n* points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

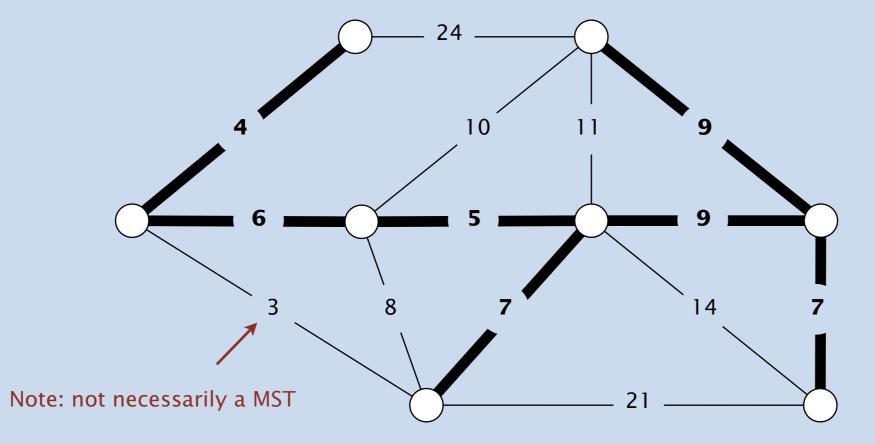


Brute force. Compute ~ $n^2/2$ distances and run Prim's algorithm. Ingenuity. Exploit geometry; $n \log n$ using Delaunay triangulation.

MINIMUM BOTTLENECK SPANNING TREE

Problem. Given an edge-weighted graph *G*, find a spanning tree that minimizes the maximum weight of its edges.

Running time. $E \log E$ (or better).



minimum bottleneck spanning tree T (bottleneck = 9)