
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/7/17 9:52 AM

4.1 UNDIRECTED GRAPHS

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ challenges

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ challenges

4.1 UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Graph. Set of vertices connected pairwise by edges. 

Why study graph algorithms?

Thousands of practical applications.

Hundreds of graph algorithms known.

Interesting and broadly useful abstraction.

Challenging branch of computer science and discrete math.

3

Undirected graphs

Social networks

Vertex = person; edge = social relationship.

4

“Visualizing Friendships” by Paul Butler

Protein-protein interaction network

Vertex = protein; edge = interaction.

5Reference: Jeong et al, Nature Review | Genetics

The evolution of FCC lobbying coalitions

Vertex = company; edge = lobbying partner.

6“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

7

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Vertex = IP address.

Edge = connection.

8

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein–protein interaction

molecule atom bond

Graph. Set of vertices connected pairwise by edges.

Path. Sequence of vertices connected by edges.

Def. Two vertices are connected if there is a path between them.

Cycle. Path whose first and last vertices are the same.

9

Graph terminology

1

4

9

2

5

3

0

1211

10

2

3

0

7

vertex

path between 0 to 2
(of length 3)

5

edge
(incident to vertices 6 and 8)

6 8

(of degree 3)

6 8

1

4

2

0

5

4

9

1211

10

cycle
(of length 4)

9

1211

10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge. Which graph problems are easy? difficult? intractable?

problem description

s-t path Is there a path between s and t ?

shortest s-t path What is the shortest path between s and t ?

cycle Is there a cycle in the graph ?

Euler cycle Is there a cycle that uses each edge exactly once ?

Hamilton cycle Is there a cycle that uses each vertex exactly once ?

connectivity Is there a path between every pair of vertices ?

biconnectivity Is there a vertex whose removal disconnects the graph ?

planarity Can the graph be drawn in the plane with no crossing edges ?

graph isomorphism Are two graphs isomorphic?

10

Some graph-processing problems

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ challenges

4.1 UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Graph drawing. Provides intuition about the structure of the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caveat. Intuition can be misleading.

12

Graph representation

Two drawings of the same graph

Two drawings of the same graphtwo drawings of the same graph

Graph drawing. Provides intuition about the structure of the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caveat. Intuition can be misleading.

13

Graph representation

Vertex representation.

This lecture: use integers between 0 and V – 1.

Applications: convert between names and integers with symbol table.

 
 
 
 
 
 
 
 
 
 
 
Anomalies.

A

G

E

CB

F

D

14

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop

15

Graph API

 public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v–w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
 int degree = 0;
 for (int w : G.adj(v))
 degree++;
 return degree;
}

Maintain a two-dimensional V-by-V boolean array;  
for each edge v–w in graph: adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0 0 0 0 0 0

4 0 0 0 1 0 1 1 0 0 0 0 0 0

5 1 0 0 1 1 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0

11 0 0 0 0 0 0 0 0 0 1 0 0 1

12 0 0 0 0 0 0 0 0 0 1 0 1 0

16

Graph representation: adjacency matrix

two entries
for each edge

87

109

1211

0

6

4

21

5

3

Which is order of growth of running time of the following code
fragment if the graph uses the adjacency-matrix representation,  
where V is the number of vertices and E is the number of edges?

 

A. V

B. E + V

C. V 2

D. V E

17

Undirected graphs: quiz 1

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))

 StdOut.println(v + "-" + w);

print each edge twice

Maintain vertex-indexed array of lists.

18

Graph representation: adjacency lists

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87

109

1211

0

6

4

21

5

3

Which is order of growth of running time of the following code
fragment if the graph uses the adjacency-lists representation,  
where V is the number of vertices and E is the number of edges?

A. V

B. E + V

C. V 2

D. V E

19

Undirected graphs: quiz 2

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))

 StdOut.println(v + "-" + w);

degree(v0) + degree(v1) + degree(v2) + … = 2 E

print each edge twice

In practice. Use adjacency-lists representation.

Algorithms based on iterating over vertices adjacent to v.
Real-world graphs tend to be sparse (not dense).

20

Graph representations

proportional
to V edges

sparse (E = 200) dense (E = 1000)

Two graphs (V = 50)

proportional
to V 2 edges

In practice. Use adjacency-lists representation.

Algorithms based on iterating over vertices adjacent to v.
Real-world graphs tend to be sparse (not dense).

21

Graph representations

representation space add edge
edge between

v and w?
iterate over vertices

adjacent to v?

list of edges E 1 E E

adjacency matrix V 2 1 † 1 V

adjacency lists E + V 1 degree(v) degree(v)

† disallows parallel edges

22

Adjacency-list graph representation: Java implementation

public class Graph
{

}

private final int V;  
private Bag<Integer>[] adj;

public Iterable<Integer> adj(int v) 
{ return adj[v]; }

public Graph(int V)  
{ 
 this.V = V;  
 adj = (Bag<Integer>[]) new Bag[V]; 
 for (int v = 0; v < V; v++) 
 adj[v] = new Bag<Integer>(); 
}

public void addEdge(int v, int w) 
{ 
 adj[v].add(w);  
 adj[w].add(v);  
}

adjacency lists

(using Bag data type)

create empty graph 
with V vertices

add edge v-w 
(parallel edges and 
self-loops allowed)

iterator for vertices adjacent to v

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ challenges

4.1 UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

24

Maze exploration

Maze graph.

Vertex = intersection.

Edge = passage.

Goal. Explore every intersection in the maze.

intersection passage

25

Maze exploration: National Building Museum

http://www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist

http://www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist

Algorithm.

Unroll a ball of string behind you.

Mark each newly discovered intersection and passage.

Retrace steps when no unmarked options.

26

Trémaux maze exploration

Tremaux explorationTremaux explorationTremaux explorationTremaux explorationTremaux explorationTremaux exploration

27

Trémaux maze exploration

Algorithm.

Unroll a ball of string behind you.

Mark each newly discovered intersection and passage.

Retrace steps when no unmarked options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; 
Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with electromechanical mouse)
http://www.corp.att.com/attlabs/reputation/timeline/16shannon.html

The Cretan Labyrinth (with Minotaur)
http://commons.wikimedia.org/wiki/File:Minotaurus.gif

http://www.crystalinks.com/labyrinths.html

28

Maze exploration: easy

29

Maze exploration: medium

30

Maze exploration: challenge for the bored

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration.

 
 
 
 
 
 
 
 
Typical applications.

Find all vertices connected to a given source vertex.

Find a path between two vertices.

 
 
Design challenge. How to implement?

Depth-first search

Mark vertex v.
Recursively visit all unmarked
 vertices w adjacent to v.

DFS (to visit a vertex v)

function-call stack
plays role of ball of string

To visit a vertex v :
Mark vertex v.
Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo

32

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :
Mark vertex v.
Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Depth-first search demo

33

vertices reachable from 0

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

T

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

0

0

5

6

4

0

–

–

–

–

–

–

34

Design pattern. Decouple graph data type from graph processing.

Create a Graph object.

Pass the Graph to a graph-processing routine.

Query the graph-processing routine for information.

Design pattern for graph processing

 Paths paths = new Paths(G, s);
 for (int v = 0; v < G.V(); v++)
 if (paths.hasPathTo(v))
 StdOut.println(v);

print all vertices 
connected to s

 public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

To visit a vertex v :
Mark vertex v.
Recursively visit all unmarked vertices adjacent to v.

 
Data structures.

Boolean array marked[] to mark vertices.

Integer array edgeTo[] to keep track of paths. 
(edgeTo[w] == v) means that edge v-w taken to discover vertex w

Function-call stack for recursion.

Depth-first search: data structures

36

Depth-first search: Java implementation

public class DepthFirstPaths
{

}

private boolean[] marked;  
private int[] edgeTo;  
private int s;

public DepthFirstPaths(Graph G, int s) 
{ 
 ... 
 dfs(G, s); 
}

private void dfs(Graph G, int v) 
{ 
 marked[v] = true;  
 for (int w : G.adj(v))  
 if (!marked[w])  
 { 
 edgeTo[w] = v;  
 dfs(G, w);  
 } 
}

recursive DFS does the work

marked[v] = true
if v connected to s

edgeTo[v] = previous
vertex on path from s to v

find vertices connected to s

initialize data structures

Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to  
the sum of their degrees (plus time to initialize the marked[] array).  

Pf. [correctness]

If w marked, then w connected to s (why?)

If w connected to s, then w marked. 
(if w unmarked, then consider last edge 
on a path from s to w that goes from a 
marked vertex to an unmarked one). 

Pf. [running time]  
Each vertex connected to s is visited once.

37

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Proposition. After DFS, can check if vertex v is connected to s in constant

time and can find v–s path (if one exists) in time proportional to its length. 

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

38

Depth-first search: properties

 public boolean hasPathTo(int v)
 { return marked[v]; }

 public Iterable<Integer> pathTo(int v)
 {
 if (!hasPathTo(v)) return null;
 Stack<Integer> path = new Stack<Integer>();
 for (int x = v; x != s; x = edgeTo[x])
 path.push(x);
 path.push(s);
 return path;
 }

Trace of pathTo() computation

edgeTo[]
 0
 1 2
 2 0
 3 2
 4 3
 5 3

5 5
3 3 5
2 2 3 5
0 0 2 3 5

x path

 
Problem. Implement flood fill (Photoshop magic wand).

 
 

 
 
 
 
Solution. Build a grid graph (implicitly).

Vertex: pixel.

Edge: between two adjacent gray pixels.

Blob: all pixels connected to given pixel.

 
Extra concern. Function-call stack depth.

FLOOD FILL

39

 
Challenge. Implement DFS without recursion.

NON-RECURSIVE DFS

40

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ challenges

4.1 UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Tree traversal. Many ways to explore every vertex in a binary tree.

Inorder: A C E H M R S X

Preorder: S E A C R H M X

Postorder: C A M H R E X S

Level-order: S E X A R C H M

 
 
 
 
 
Graph search. Many ways to explore every vertex in a graph.

Preorder: vertices in order of calls to dfs(G, v).

Postorder: vertices in order of returns from dfs(G, v).

Level-order: vertices in increasing order of distance from s.

Graph search

43

A
C

E

H
M

R

S
X

Repeat until queue is empty:

Remove vertex v from queue.

Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

44

graph G

0

4

2

1

5

3

adj[]
0

1

2

3

4

5

2 1 5

0 2

5 4 2

3 2

3 0

0 1 3 4

6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

tinyCG.txt standard drawing

drawing with both edges

adjacency lists

A connected undirected graph

V
E

0

4

2

1

5

3

Repeat until queue is empty:

Remove vertex v from queue.

Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

45

done

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

Repeat until queue is empty:

Remove vertex v from queue.

Add to queue all unmarked vertices adjacent to v and mark them.

46

Breadth-first search

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v
 - add each of v's unmarked neighbors to the queue,  
 and mark them.

BFS (from source vertex s)

Breadth-first
maze exploration

47

Breadth-first search: Java implementation

public class BreadthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int[] distTo;

 …

}

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v–w

 while (!q.isEmpty()) { 
 int v = q.dequeue(); 
 for (int w : G.adj(v)) { 
 if (!marked[w]) { 
 q.enqueue(w); 
 marked[w] = true; 
 edgeTo[w] = v; 
 distTo[w] = distTo[v] + 1;  
 } 
 } 
 } 
}

private void bfs(Graph G, int s) {  
 Queue<Integer> q = new Queue<Integer>(); 
 q.enqueue(s);  
 marked[s] = true;
 distTo[s] = 0;

Q. In which order does BFS examine vertices?

A. Increasing distance (number of edges) from s.
 
 
 
 
Proposition. In any connected graph G, BFS computes shortest paths 
from s to all other vertices in time proportional to E + V.

Breadth-first search properties

48

0

4

2

1

5
3

graph G

4

3

dist = 2dist = 1

2

1

5

0

dist = 0

s

queue always consists of ≥ 0 vertices of distance k from s,
followed by ≥ 0 vertices of distance k+1

49

Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977

50

Breadth-first search application: Kevin Bacon numbers

SixDegrees iPhone App

Endless Games board game

http://oracleofbacon.org

51

Kevin Bacon graph

Include one vertex for each performer and one for each movie.

Connect a movie to all performers that appear in that movie.

Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...

movies.txt

V and E
not explicitly

specified

"/"
delimiter

52

Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ challenges

4.1 UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Problem. Identify connected components.

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

Graph-processing challenge 1

54

0-1
0-5
2-6
2-3
2-4
4-6

0

6

4

21

5

3

simple DFS-based solution 
(see textbook)

0-1
0-5
2-6
2-3
2-4
4-6

0

6

4

21

5

3

Problem. Identify connected components.

 
Particle detection. Given grayscale image of particles, identify “blobs.”

Vertex: pixel.

Edge: between two adjacent pixels with grayscale value ≥ 70.

Blob: connected component of 20–30 pixels.

Graph-processing challenge 1

55

Graph-processing challenge 2

Problem. Is a graph bipartite?

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

56

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

simple DFS-based solution 
(see textbook)

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

{ 0, 3, 4 }

Graph-processing challenge 3

Problem. Find a cycle in a graph (if one exists).

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

57

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

0-5-4-6-0

simple DFS-based solution 
(see textbook)

Graph-processing challenge 4

Problem. Is there a (general) cycle that uses every edge exactly once?

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

58

0-1
0-2
0-5
0-6
1-2
2-3
2-4
3-4
4-5
4-6

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0

yes if and only if graph is connected 
and every vertex has even degree

(Leonhard Euler 1786)

moreover, if graph is Eulerian,
can find a Euler cycle via DFS

Graph-processing challenge 5

Problem. Is there a cycle that contains every vertex exactly once?

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

59

0-1
0-2
0-5
0-6
1-2
2-6
3-4
3-5
4-5
4-6

0-5-3-4-6-2-1-0

0

6

4

21

5

3

Hamilton cycle 
(classic NP-complete problem)

Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names?

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

60

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

graph isomorphism is  
longstanding open problem

3

1

5

2

4

0

6

0-4
0-5
0-6
1-4
1-5
2-4
3-4
5-6

0↔4, 1↔3, 2↔2, 3↔6, 4↔5, 5↔0, 6↔1

Graph-processing challenge 7

Problem. Can you draw a graph in the plane with no crossing edges?

 
 
 
 
How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

61

linear-time DFS-based planarity algorithm  
discovered by Tarjan in 1970s 

(too complicated for most practitioners)

1

6

4

2

0

5

3

0

6

4

21

5

3

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

try it yourself at http://planarity.net

http://planarity.net

62

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

graph problem BFS DFS time

s-t path ✔ ✔ E + V

shortest s-t path ✔ E + V

cycle ✔ ✔ E + V

Euler cycle ✔ E + V

Hamilton cycle

bipartiteness (odd cycle) ✔ ✔ E + V

connected components ✔ ✔ E + V

biconnected components ✔ E + V

planarity ✔ E + V

graph isomorphism

2 1.657 V

2 c ln3 V

