A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.1 SYMBOL TABLES

» AP/

» elementary implementations

» ordered operations

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Data structures

“ Smart data structures and dumb code works a lot better

than the other way around. > — Eric S. Raymond

& THE BAZAAR

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIONARY

b

"ERIC S. RAYMOND

WITH A FOREWORD BY BOB YOUNG. CHAIRMAN & CEO OF RED HAT. INC.

3.1 SYMBOL TABLES

» AP/

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Why are telephone books obsolete?

Unsupported operations.
« Add a new name and associated number.

« Remove a given name and associated number.
« Change the number associated with a given name.

— ise]
’: UMB '-;U Bo {1 |

key = term key = name
article -
value = phone number

<
=
c
)
Il

- The Oxford
English

Dictionary

key = function and input
value = function output

key = word key = time and channel
value = definition value = TV show

Symbol tables

Key—-value pair abstraction.
e Insert a value with specified key.
« Given a key, search for the corresponding value.

Ex. DNS lookup.
e Insert domain name with specified IP address.
« Given domain name, find corresponding IP address.

domain name IP address

www.cs.princeton.edu 128.112.136.11
www.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55

T T

key value

Symbol table applications

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable name type and value
routing table route Internet packets destination best route
DNS find IP address domain name IP address
reverse DNS find domain name IP address domain name
genomics find markers DNA string known positions

file system find file on disk filename location on disk

Symbol tables: context

Also known as: maps, dictionaries, associative arrays.
Generalizes arrays. Keys need not be between 0 and n—1.

Language support.
« External libraries: C, VisualBasic, Standard ML, bash,
o Built-in libraries: Java, C#, C++, Scala, ...
« Built-in to language: Awk, Perl, PHP, Tcl, JavaScript, Python, Ruby, Lua.

/ / /

every array is an every object is an table is the only
associative array associative array “primitive” data structure

has_nice_syntax_for_associative_arrays['"Python"] True

has_nice_syntax_for_associative_arrays["Java'"] False

legal Python code

Basic symbol table API

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

void
Value
boolean

Iterable<Key>

STO

put(Key key, Value val)
get(Key key)
contains(Key key)

keys()

create an empty symbol table
insert key—value pair
value paired with key
is there a value paired with key?

all the keys in the symbol table

<«— a[key]

<«—— al[key]

val;

Conventions

« Method get() returns null if key not present.
« Method put() overwrites old value with new value.

e Values are not null. «— java.util.Map allows null values

“ Careless use of null can cause a staggering variety of bugs.
Studying the Google code base, we found that something like
95% of collections weren't supposed to have any null values
in them, and having those fail fast rather than silently accept
null would have been helpful to developers. ”

.0’ guava-libraries

Guava: Google Core Libraries for Java 1.6+

Conventions

« Method get() returns null if key not present.

« Method put() overwrites old value with new value.

e Values are not null.

Intended consequences.
o Easy to implement contains().

public boolean contains(Key key)
{ return get(key) != null; }

e Can implement lazy version of delete().

public void delete(Key key)
{ put(key, null); }

10

Keys and values

Value type. Any generic type.

specify Comparable in API.

Key type: several natural assumptions. /

e ASsume
e ASsume
e ASsume

KeysS are Comparable, use compareTo().
keys are any generic type, use equals() to test equality.

Keys are any generic type, use equals() to test equality;

use hashCode() to scramble key.

\ built-in to Java

(stay tuned)

Best practices. Use immutable types for symbol table keys.

« Immutable in Java: Integer, Double, String, java.io.FiTe, ...

« Mutable in Java: StringBuilder, java.net.URL, arrays, ...

11

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

o Reflexive: x.equals(x) is true. equivalence

relation

o Symmetric: x.equals(y) iff y.equals(x).
e Transitive: if x.equals(y) and y.equals(z), then x.equals(z). ~

e Non-null: x.equals(null) is false.

do x and y refer to

/ the same object?

Default implementation. (x == y)
Customized implementations. Integer, Double, String, java.io.File, ...
User-defined implementations. Some care needed.

12

Implementing equals for user-defined types

Seems easy.

public class Date implements Comparable<Date>

{

private final int month;
private final int day;
private final int year;

public boolean equals(Date that)

{
: : - _
1? (t:is.day " ' t:at.day h) return ia?l Sej check that all significant
1 (t TS.mont = that.month) return false; «—— fields are the same
if (this.year != that.year) return false;
return true;
}

Implementing equals for user-defined types

typically unsafe to use equals () with inheritance

Seems easy, but requires some care. (would violate symmetry)

public final class Date implements Comparable<Date>

{

private final int month;
private final int day;
private final int year;

must be Object.

public boolean equals(Object y) < Why? Experts still debate.

{
1f (y == this) return true; <«——— optimization (for reference equality)
if (y == null) return false; <«—— check for null
' i | = i S. objects must be in the same class
1f (y.getClass() this.getClass())]

return false; (religion: getClass() vs. instanceof)

Date that = (Date) y; <«—— cast is now guaranteed to succeed
: : - .

Tf (this.day = that.day) return false; check that all significant

1f (this.month != that.month) return false; <——

. . fields are the same
1t (this.year != that.year) return false;

return true;

14

Equals design

“Standard” recipe for user-defined types.

« Optimization for reference equality.

« Check against null.
e Check that two objects are of the same type; cast.

« Compare each significant field:

— if field is a primitive type, use == —

— if field is an object, use equals() —

— if field is an array, apply to each entry «——
Best practices. -

but use Double.compare() for double
(to deal with —0.0 and NaN)

apply rule recursively

can use Arrays.deepEquals(a, b)
but not a.equals(b)

e.g., cached Manhattan distance

« No need to use calculated fields that depend on other fields.

« Compare fields mostly likely to differ first.

« Make compareTo() consistent with equals().

\

x.equals(y) ifand only if (x.compareTo(y) == 0)

15

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input;
print one that occurs most often.

% more tinyTale.txt

1t was the best of times

it was the worst of times

1t was the age of wisdom

1t was the age of foolishness
it was the epoch of belief

it was the epoch of incredulity
1t was the season of 1light

1t was the season of darkness
1t was the spring of hope

1t was the winter of despair

% java FrequencyCounter 3 < tinyTale.txt <«—— tinyexample
the 10 (60 words, 20 distinct)

% java FrequencyCounter 8 < tale.txt <« real example
business 122 (135,635 words, 10,769 distinct)

% java FrequencyCounter 10 < leipziglM.txt «—— realexample
(21,191,455 words, 534,580 distinct)
government 24763

Frequency counter implementation

public class FrequencyCounter

{

public static void main(String[] args)

{

int minLength = Integer.parselnt(args[0]);

ST<String, Integer> st = new ST<String, Integer>(); <
while (!StdIn.isEmpty())
{

String word = StdIn.readString(Q; _ — ignore short strings
1f (word.length() < minLength) continue;

if (!st.contains(word)) st.put(word, 1); <
else st.put(word, st.get(word) + 1);

}

String max = "";
st.put(max, 0);
for (String word : st.keys())
1f (st.get(word) > st.get(max))
max = word;

StdOut.printin(max + " " + st.get(max));

print a string with max frequency

create ST

read string and
update frequency

17

3.1 SYMBOL TABLES

» elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key—value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

get("A")

put("M", 9) ¢

19

Elementary ST implementations: summary

guarantee average case

implementation
mm

sequential search
(unordered list)

n n n n

Challenge. Efficient implementations of both search and insert.

operations
on keys

equals()

20

Binary search in an ordered array

Data structure. Maintain parallel arrays for keys and values, sorted by keys.

Search. Use binary search to find key.

Proposition. At most ~1gn compares to search a sorted array of length ».

keys[] vals[]
O 1 2 3 4 5 6 9 O 1 2 3 4 5 6 7 8 9
get("P") A CEHLMZPR RS X 8425119307
1o hi m o
0 9 4 ACEHILMUGPTU R S X entries in black
s 9 7 M P R S X/area[1o..h1’]
5 6 5 MCE) s
6 6 6 entry in red is a[m

return vals|[6]

21

Binary search in an ordered array

Data structure. Maintain parallel arrays for keys and values, sorted by keys.

Search. Use binary search to find key.

public Value get(Key key)

{

int lo = 0, hi1 = n-1;

while (1o <= hi)

{
int mid = lo + Ch1 - lo) / 2;
int cmp = key.compareTo(keys[mid]);
1f (cmp < 0) hi = mid - 1;
else if (cmp > 0) 1o = mid + 1;
else return vals[mid];

}

return null; «<—— no matching key

Elementary symbol tables: quiz 1

Implementing binary search was

A.
B
C.
D
E

Much easier than | thought.
Easier than | thought.
About what | expected.
Harder than | thought.

Much harder than | thought.

23

FIND THE FIRST 1

Problem. Given an array with all Os in the beginning and all 1s at the end,
with more 1s thanks Os, find the index in the array where the 1s begin.

imput O O O O ... O O O 1 1 1 1T 1 1 .. 1 1 1T 1

24

Binary search: insert

Data structure. Maintain an ordered array of key—value pairs.

Insert. Use binary search to find place to insert; shift all larger keys over.

Proposition. Takes linear time in the worst case.

put("P", 10)

keys[] vals[]

8 9 O 1 2 3 4 5 6 7 8 9
8 4 6 5 9 3 0 7 - -

26

Elementary ST implementations: summary

guarantee average case
operations

implementation
on keys

sequential search
(unordered list)

3 I

n n n equals()

binary search
(ordered array) log n @ log n @ compareTo()

1t can do with log n compares, but requires n array accesses

Challenge. Efficient implementations of both search and insert.

27

3.1 SYMBOL TABLES

» ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Examples of ordered symbol table API

keys

values

min()—>09:00:00 Chicago
09:00:03 Phoenix

09:00: Houston
get(09:00:13) 9:00:59 Chicago

09
floor(09:05:00)—-09
09

select(7)—=09

09
09
09
keys(09:15:00, 09:25:00)—| 09
09
09
09
ceiling(09:30:00)—= 09
09

max()—>09

s1ze(09:15:00, 09:25:00) 1s 5
rank (09:10:25) 1s 7

:01:
:03:
:10:
:10:
:14:
:19:
:19:
:05 Chicago
:43 Seattle
122
125
:35:
:36:
:37:

21
=22

10 Houston
13 Chicago
11 Seattle
25 Seattle
25 Phoenix
32 Chicago
46 Chicago

54 Seattle
52 Chicago
21 Chicago
14 Seattle
44 Phoenix

29

Ordered symbol table API

public class ST<Key(§xtends Comparable<Key>,) Value>

Key
Key
Key
Key
int

Key

min()

max ()

floor(Key key)
ceiling(Key key)
rank (Key key)

select(int k)

smallest key
largest key
largest key less than or equal to key
smallest key greater than or equal to key

number of keys less than key

key of rank k

30

RANK IN A SORTED ARRAY

Problem. Given a sorted array of n distinct keys, find the number of keys
strictly less than a given query key.

31

Binary search: ordered symbol table operations summary

sequential binary
search search

search n log n

: ()
min / max n 1
floor / ceiling n log n
rank n log n
select n 1

order of growth of the running time for ordered symbol table operations

33

