2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
A **collection** is a data type that stores a group of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>core operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>PUSH, POP</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>queue</td>
<td>ENQUEUE, DEQUEUE</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>priority queue</td>
<td>INSERT, DELETE-MAX</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>PUT, GET, DELETE</td>
<td>binary search tree, hash table</td>
</tr>
<tr>
<td>set</td>
<td>ADD, CONTAINS, DELETE</td>
<td>binary search tree, hash table</td>
</tr>
</tbody>
</table>

“Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the item with the largest (or smallest) key.

Generalizes: stack, queue, randomized queue.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>E</td>
<td>P</td>
</tr>
</tbody>
</table>
Priority queue API

Requirement. Items are generic; they must also be Comparable.

```java
public class MaxPQ<Key extends Comparable<Key>> {
    // Methods
    MaxPQ() // create an empty priority queue
    MaxPQ(Key[] a) // create a priority queue with given keys
    void insert(Key v) // insert a key into the priority queue
    Key delMax() // return and remove a largest key
    boolean isEmpty() // is the priority queue empty?
    Key max() // return a largest key
    int size() // number of entries in the priority queue
}
```

Note. Duplicate keys allowed; `delMax()` picks any maximum key.
Priority queue: applications

- Event-driven simulation.
- Numerical computation.
- Discrete optimization.
- Artificial intelligence.
- Computer networks.
- Operating systems.
- Data compression.
- Graph searching.
- Number theory.
- Spam filtering.
- Statistics.

[customers in a line, colliding particles]
[reducing roundoff error]
[bin packing, scheduling]
[A* search]
[web cache]
[load balancing, interrupt handling]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[Bayesian spam filter]
[online median in data stream]
Priority queue: client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate N transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

% more transactions.txt
Turing 6/17/1990 644.08
vonNeumann 3/26/2002 4121.85
Dijkstra 8/22/2007 2678.40
vonNeumann 1/11/1999 4409.74
Dijkstra 11/18/1995 837.42
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20

% java TopM 5 < transactions.txt
Thompson 2/27/2000 4747.08
vonNeumann 2/12/1994 4732.35
vonNeumann 1/11/1999 4409.74
Hoare 8/18/1992 4381.21
vonNeumann 3/26/2002 4121.85
Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```java
MinPQ<Transaction> pq = new MinPQ<Transaction>();
while (StdIn.hasNextLine())
{
    String line = StdIn.readLine();
    Transaction transaction = new Transaction(line);
    pq.insert(transaction);
    if (pq.size() > M)
        pq.delMin();
}
```

Use a min-oriented pq.

Transaction data type is Comparable (ordered by $$).

N huge, M large

pq now contains largest M items
Priority queue: unordered and ordered array implementation

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td>2</td>
<td>P E</td>
<td>E P</td>
<td>E P</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td>4</td>
<td>P E X</td>
<td>A E P X</td>
<td>A E P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td>5</td>
<td>P E X</td>
<td>A E M P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>4</td>
<td>P E M</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td>5</td>
<td>P E M</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>6</td>
<td>P E M</td>
<td>A E L M P</td>
<td>A E L M P</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>7</td>
<td>P E M</td>
<td>A E E L M P P</td>
<td>A E E L M P P</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td>6</td>
<td>E M A</td>
<td>A E E L M P</td>
<td>A E E L M P</td>
</tr>
</tbody>
</table>

A sequence of operations on a priority queue
Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal for today</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

Order of growth of running time for priority queue with N items
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete binary tree with N nodes is $\lceil \lg N \rceil$.

Pf. Height increases only when N is a power of 2.
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Complete binary tree: array representation

Array representation.

- Indices start at 1.
- Take nodes in level order.
- Children of node k at locations 2^k and 2^k+1
- No explicit links needed!
What is the index of the parent of the item at index k in a binary heap?

A. $k/2 - 1$
B. $k/2$
C. $k/2 + 1$
D. *None of the above.*
E. *I don't know.*
Binary heap

Array representation.
- Indices start at 1.
- Take nodes in level order.
- Children of node k at locations $2k$ and $2k+1$
- No explicit links needed!

Max-Heap ordering.
- Keys in nodes.
- Parent's key no smaller than children's keys.
- “Just enough” ordering to support efficient priority queue operations.

Binary heap. Array representation of a heap-ordered complete binary tree.
Binary heap: properties

“Just enough” ordering to support efficient priority queue operations.

- Largest key is $a[1]$, which is the root of the binary tree.

- Can use array indices to move through the tree.
 - Children of node at k at locations $2k$ and $2k+1$.
 - Parent of node at k is at $k/2$.

- `insert()` and `delMax()` violate heap order, but easy to fix up.
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

```
  T
 /   \
P     R
/     /  \
N     O   A
/     /   / \
E     I   G
```

Observations:
- **First heap order:** T, P, R, N, H, O, A, E, I, G
- **Second heap order:** T, P, R, N, H, O, A, E, I, G
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Binary heap: promotion

Scenario. A key becomes **larger** than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

![Diagram showing a binary heap with a scenario where a key becomes larger than its parent's key, and the `swim` method implementation shown on the left.](image-url)
Binary heap: insertion

Insert. Add node at end, then swim it up.

Cost. At most $1 + \lg N$ compares.

```java
public void insert(Key x) {
    pq[++N] = x;
    swim(N);
}
```
Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children's.

To eliminate the violation:
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= N) {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

![Diagram](image)
Binary heap: delete the maximum

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \log N$ compares.

```java
public Key delMax()
{
    Key max = pq[1];
    exch(1, N);
    pq[N--] = null;
    sink(1);
    return max;
}
```
Priority queue: implementations cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
</tbody>
</table>

Order-of-growth of running time for priority queue with N items
Goal. Delete a random key from a binary heap in logarithmic time.
Delete-Random From a Binary Heap

Goal. Delete a random key from a binary heap in logarithmic time.

![Binary Heap Diagram]

Solution.
- Pick a random index r between 1 and N.
- Perform $\text{exch}(r, N--)$.
- Perform either $\text{sink}(r)$ or $\text{swim}(r)$.
Goal. Delete a random key from a binary heap in logarithmic time.

Solution.
- Pick a random index r between 1 and N.
- Perform $\text{exch}(r, N--)$.
- Perform either $\text{sink}(r)$ or $\text{swim}(r)$.
Do "half-exchanges" in sink and swim.

- Reduces number of array accesses.
- Worth doing.
Binary heap: practical improvements

Multiway heaps.
• Complete d-way tree.
• Parent's key no smaller than any of its children's keys.

Fact. Height of complete d-way tree on N nodes is $\sim \log_d N$.

3-way heap
Priority queues: quiz 2

How many compares (in the worst case) to insert in a d-way heap?

A. $\sim \log_2 N$
B. $\sim \log_d N$
C. $\sim d \log_2 N$
D. $\sim d \log_d N$
E. I don't know.
How many compares (in the worst case) to \texttt{delete-max} in a \(d\)-way heap?

A. \(\sim \log_2 N\)
B. \(\sim \log_d N\)
C. \(\sim d \log_2 N\)
D. \(\sim d \log_d N\)
E. \texttt{I don't know.}\
Priority queue: implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>$\log_d N$</td>
<td>$d \log_d N$</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

sweet spot: $d = 4$

why impossible?

† amortized

order-of-growth of running time for priority queue with N items
Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace `less()` with `greater()`.
- Implement `greater()`.

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

leads to log N amortized time per op (how to make worst case?)

Can implement efficiently with `sink()` and `swim()` [stay tuned for Prim/Dijkstra]
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
What are the properties of the following algorithm?

```java
public void sort(String[] a) {
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

A. $N \log N$ compares in the worst case.

B. In-place.

C. Stable.

D. All of the above.

E. I don't know.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all N keys.
- Sortdown: repeatedly remove the maximum key.
Heapsort demo

Heap construction. Build max heap using bottom-up method.

we assume array entries are indexed 1 to N

array in arbitrary order

```
S  O  R  T  E  X  A  M  P  L  E
1  2  3  4  5  6  7  8  9 10 11
```
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

<table>
<thead>
<tr>
<th>A</th>
<th>E</th>
<th>E</th>
<th>L</th>
<th>M</th>
<th>O</th>
<th>P</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Heapsort: heap construction

First pass. Build heap using bottom-up method.

```java
for (int k = N/2; k >= 1; k--)
    sink(a, k, N);
```

starting point (arbitrary order)

result (heap-ordered)
Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```
while (N > 1) {
    exch(a, 1, N--);
    sink(a, 1, N);
}
```
Heapsort: Java implementation

```java
public class Heap {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int k = N/2; k >= 1; k--)
            sink(a, k, N);
        while (N > 1)
            { 
            exch(a, 1, N);
            sink(a, 1, --N);
        }
    }

    private static void sink(Comparable[] a, int k, int N) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}
```

but make static (and pass arguments)

but convert from 1-based indexing to 0-base indexing
Heapsort: trace

\[
\begin{array}{cc|c|cccccccccc}
N & k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\text{initial values} & & S & O & R & T & E & X & A & M & P & L & E \\
11 & 5 & S & O & R & T & L & X & A & M & P & E & E \\
11 & 4 & S & O & R & T & L & X & A & M & P & E & E \\
11 & 3 & S & O & X & T & L & R & A & M & P & E & E \\
11 & 2 & S & T & X & P & L & R & A & M & O & E & E \\
11 & 1 & X & T & S & P & L & R & A & M & O & E & E \\
\text{heap-ordered} & & X & T & S & P & L & R & A & M & O & E & E \\
10 & 1 & T & P & S & O & L & R & A & M & E & E & X \\
9 & 1 & S & P & R & O & L & E & A & M & E & T & X \\
8 & 1 & R & P & E & O & L & E & A & M & S & T & X \\
7 & 1 & P & O & E & M & L & E & A & R & S & T & X \\
6 & 1 & O & M & E & A & L & E & P & R & S & T & X \\
5 & 1 & M & L & E & A & E & O & P & R & S & T & X \\
4 & 1 & L & E & E & A & M & O & P & R & S & T & X \\
3 & 1 & E & A & E & L & M & O & P & R & S & T & X \\
2 & 1 & E & A & E & L & M & O & P & R & S & T & X \\
1 & 1 & A & E & E & L & M & O & P & R & S & T & X \\
\text{sorted result} & & A & E & E & L & M & O & P & R & S & T & X \\
\end{array}
\]

Heapsort trace (array contents just after each sink)
Heapsort: mathematical analysis

Proposition. Heap construction makes \(\leq N \) exchanges and \(\leq 2N \) compares.

Pf sketch. [assume \(N = 2^{h+1} - 1 \)]

\[
h + 2(h - 1) + 4(h - 2) + 8(h - 3) + \ldots + 2^h(0) = 2^{h+1} - h - 2 = N - (h + 1) \leq N
\]
Heapsort: mathematical analysis

Proposition. Heap construction makes $\leq N$ exchanges and $\leq 2N$ compares.

Proposition. Heapsort uses $\leq 2N \lg N$ compares and exchanges.

algorithm can be improved to $\sim N \lg N$
(but no such variant is known to be practical)

Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space.
- Quicksort: no, quadratic time in worst case.
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, **but:**

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

can be improved using advanced caching tricks
Introsort

Goal. As fast as quicksort in practice; $N \log N$ worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds $2 \lg N$.
- Cutoff to insertion sort for $N = 16$.

In the wild. C++ STL, Microsoft .NET Framework.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔</td>
<td></td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>N exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>use for small N or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔</td>
<td></td>
<td>$\log_3 N$</td>
<td>?</td>
<td>$c N^{3/2}$</td>
<td>tight code; subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔</td>
<td>✔</td>
<td>$\frac{1}{2} N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \log N$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔</td>
<td></td>
<td>$N \lg N$</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$N \log N$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔</td>
<td></td>
<td>N</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔</td>
<td></td>
<td>$3 N$</td>
<td>$2 N \lg N$</td>
<td>$2 N \lg N$</td>
<td>$N \log N$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard disc model.
- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.
- Einstein: explain Brownian motion of pollen grains.
Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

```java
public class BouncingBalls {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while(true)
        {
            StdDraw.clear();
            for (int i = 0; i < N; i++)
            {
                balls[i].move(0.5);
                balls[i].draw();
            }
            StdDraw.show(50);
        }
    }
}
```

% java BouncingBalls 100
Warmup: bouncing balls

```java
public class Ball {
    private double rx, ry;       // position
    private double vx, vy;       // velocity
    private final double radius; // radius
    public Ball(...) {
        /* initialize position and velocity */
    }

    public void move(double dt) {
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }

    public void draw() {
        StdDraw.filledCircle(rx, ry, radius);
    }
}
```

Missing. Check for balls colliding with each other.

- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
Time-driven simulation

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

t

$t + dt$

$t + 2 dt$

(collision detected)

$t + \Delta t$

(roll back clock)
Main drawbacks.

- $\sim N^2/2$ overlap checks per time quantum.
- Simulation is too slow if dt is very small.
- May miss collisions if dt is too large.
 (if colliding particles fail to overlap when we are looking)
Event-driven simulation

Change state only when something interesting happens.

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Delete min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.
Particle-wall collision

Collision prediction and resolution.

- Particle of radius s at position (r_x, r_y).
- Particle moving in unit box with velocity (v_x, v_y).
- Will it collide with a vertical wall? If so, when?

Prediction (at time t)

\[dt = \text{time to hit wall} \]
\[= \frac{\text{distance/velocity}}{} \]
\[= \frac{(1 - s - r_x)}{v_x} \]

Resolution (at time $t + dt$)

- Velocity after collision: $(-v_x, v_y)$
- Position after collision: $(1 - s, r_y + v_y dt)$

Predicting and resolving a particle-wall collision
Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?

\[
\Delta t = \begin{cases}
\infty & \text{if } \Delta v \cdot \Delta r \geq 0, \\
\infty & \text{if } d < 0, \\
- \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise}
\end{cases}
\]

\[
d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v)(\Delta r \cdot \Delta r - s^2), \quad s = s_i + s_j
\]

\[
\Delta v = (\Delta vx, \Delta vy) = (vx_i - vx_j, vy_i - vy_j) \quad \Delta v \cdot \Delta v = (\Delta vx)^2 + (\Delta vy)^2
\]

\[
\Delta r = (\Delta rx, \Delta ry) = (rx_i - rx_j, ry_i - ry_j) \quad \Delta r \cdot \Delta r = (\Delta rx)^2 + (\Delta ry)^2
\]

\[
\Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry)
\]

Important note: This is physics, so we won’t be testing you on it!
Collision resolution. When two particles collide, how does velocity change?

\[
\begin{align*}
 v'_{x_i} &= v_{x_i} + \frac{J_x}{m_i} \\
 v'_{y_i} &= v_{y_i} + \frac{J_y}{m_i} \\
 v'_{x_j} &= v_{x_j} - \frac{J_x}{m_j} \\
 v'_{y_j} &= v_{y_j} - \frac{J_y}{m_j}
\end{align*}
\]

Newton's second law (momentum form)

\[
J_x = \frac{J \Delta r x}{s}, \quad J_y = \frac{J \Delta r y}{s}, \quad J = \frac{2 m_i m_j (\Delta v \cdot \Delta r)}{s (m_i + m_j)}
\]

Impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!
public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { ... }

 public void move(double dt) { ... }
 public void draw() { ... }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }
 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }
}

http://algs4.cs.princeton.edu/61event/Particle.java.html
Particle-particle collision and resolution implementation

```java
public double timeToHit(Particle that)
{
    if (this == that) return INFINITY;
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if( dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double s = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - s*s);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
}
```

```java
public void bounceOff(Particle that)
{
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    double s = this.radius + that.radius;
    double J = 2 * this.mass * that.mass * dvdr / (s * (this.mass + that.mass));
    double Jx = J * dx / s;
    double Jy = J * dy / s;
    this.vx += Jx / this.mass;
    this.vy += Jy / this.mass;
    that.vx -= Jx / that.mass;
    that.vy -= Jy / that.mass;
    this.count++;
    that.count++;    
```

Important note: This is physics, so we won't be testing you on it!
Collision system: event-driven simulation main loop

Initialization.

- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

Main loop.

- Delete the impending event from PQ (min priority = t).
- If the event has been invalidated, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.
Event data type

Conventions.

- Neither particle null ⇒ particle-particle collision.
- One particle null ⇒ particle-wall collision.
- Both particles null ⇒ redraw event.

private static class Event implements Comparable<Event>
{
 private final double time; // time of event
 private final Particle a, b; // particles involved in event
 private final int countA, countB; // collision counts of a and b

 public Event(double t, Particle a, Particle b)
 {
 ...}

 public int compareTo(Event that)
 {
 return this.time - that.time;
 }

 public boolean isValid()
 {
 ...}
}

create event

ordered by time

valid if no intervening collisions (compare collision counts)
Collision system implementation: main event-driven simulation loop

```java
public void simulate()
{
    pq = new MinPQ<Event>();
    for(int i = 0; i < N; i++) predict(particles[i]);
    pq.insert(new Event(0, null, null));

    while(!pq.isEmpty())
    {
        Event event = pq.de1Min();
        if(!event.isValid()) continue;
        Particle a = event.a;
        Particle b = event.b;

        for(int i = 0; i < N; i++)
            particles[i].move(event.time - t);
        t = event.time;

        if (a != null && b != null) a.bounceOff(b);
        else if (a != null && b == null) a.bounceOffVerticalWall();
        else if (a == null && b != null) b.bounceOffHorizontalWall();
        else if (a == null && b == null) redraw();

        predict(a);
        predict(b);
    }
}
```

- initialize PQ with collision events and redraw event
- get next event
- update positions and time
- process event
- predict new events based on changes
Particle collision simulation: example 1

% java CollisionSystem 100
Particle collision simulation: example 2

% java CollisionSystem < billiards.txt
Particle collision simulation: example 3

% java CollisionSystem < brownian.txt
% java CollisionSystem < diffusion.txt