
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/19/17 6:47 AM

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Cast of characters

3

Programmer needs to

develop a working solution.

Client wants to solve 
problem efficiently.

Student (you) might

play any or all of

these roles someday.

Theoretician seeks

to understand.

4

Running time

how many times

do you have to turn

the crank?

“ As soon as an Analytical Engine exists, it will necessarily guide the future  
 course of the science. Whenever any result is sought by its aid, the question 
 will then arise—By what course of calculation can these results be arrived 
 at by the machine in the shortest time? ” — Charles Babbage (1864)

Predict performance.

 
Compare algorithms.

 
Provide guarantees.

 
Understand theoretical basis.

 
 
Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

5

client gets poor performance because programmer 
did not understand performance characteristics

this course

(COS 226)

theory of algorithms

(COS 423)

6

An algorithmic success story

N-body simulation.

・Simulate gravitational interactions among n bodies.

・Applications: cosmology, fluid dynamics, semiconductors, ...

・Brute force: n2 steps.

・Barnes–Hut algorithm: n log n steps, enables new research.

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on

available time

Andrew Appel  
PU ’81

Q. Will my program be able to solve a large practical input?

Insight. [Knuth 1970s] Use scientific method to understand performance.

The challenge

7

Why is my program so slow ? Why does it run out of memory?

8

Scientific method applied to the analysis of algorithms

A framework for predicting performance and comparing algorithms.

 
Scientific method.

・Observe some feature of the natural world.

・Hypothesize a model that is consistent with the observations.

・Predict events using the hypothesis.

・Verify the predictions by making further observations.

・Validate by repeating until the hypothesis and observations agree.

 
 
Principles.

・Experiments must be reproducible.

・Hypotheses must be falsifiable.

 
 
Feature of the natural world. Computer itself.

Francis
Bacon

René
Descartes

John Stuart
Mills

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

10

Example: 3-SUM

3-SUM. Given n distinct integers, how many triples sum to exactly zero?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Context. Related to problems in computational geometry.

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

% java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

30 -40 10 0

30 -20 -10 0

-40 40 0 0

-10 0 10 0

1

2

3

4

11

3-SUM: brute-force algorithm

public class ThreeSum
{
 public static int count(int[] a)
 {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++)  
 for (int j = i+1; j < n; j++) 
 for (int k = j+1; k < n; k++) 
 if (a[i] + a[j] + a[k] == 0) 
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut.println(count(a));
 }
}

check each triple

for simplicity, ignore

integer overflow

Q. How to time a program?

A. Manual.

12

Measuring the running time

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Q. How to time a program?

A. Automatic.

13

Measuring the running time

public class Stopwatch

public Stopwatch() create a new stopwatch

public double elapsedTime() time since creation (in seconds)

(part of algs4.jar)

client code

public static void main(String[] args)

{

 In in = new In(args[0]);

 int[] a = in.readAllInts();

 Stopwatch stopwatch = new Stopwatch();

 StdOut.println(ThreeSum.count(a));

 double time = stopwatch.elapsedTime();

 StdOut.println("elapsed time = " + time);

}

Run the program for various input sizes and measure running time.

14

Empirical analysis

Run the program for various input sizes and measure running time.

15

Empirical analysis

n time (seconds) †

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

† on a 2.8GHz Intel PU-226 with 64GB 
 DDR E3 memory and 32MB L3 cache; 
 running Oracle Java 1.7.0_45-b18 on

 Springdale Linux v. 6.5

Standard plot. Plot running time T (n) vs. input size n.

16

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

lgnproblem size n
2K 4K 8K

lg
(T

(n
))

ru
nn

in
g

tim
e
T(
n

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log-log plot. Plot running time T (n) vs. input size n using log-log scale.

Regression. Fit straight line through data points: a n b.
Hypothesis. The running time is about 1.006 × 10 –10 × n 2.999 seconds.

17

Data analysis

power law

slope

log2(T (n)) = b log2 n + c
b = 2.999
c = -33.2103

T (n) = a n b, where a = 2 c

3 orders

of magnitude

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

lgnproblem size n
2K 4K 8K

lg
(T

(n
))

ru
nn

in
g

tim
e
T(
n

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

18

Prediction and validation

Hypothesis. The running time is about 1.006 × 10 –10 × n 2.999 seconds.

 
 
Predictions.

・51.0 seconds for n = 8,000.

・408.1 seconds for n = 16,000.

 
 
Observations.

validates hypothesis!

n time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

16,000 410.8

“order of growth” of running 
time is about n3 [stay tuned]

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis. Running time is about a n b with b = log2 ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

19

Doubling hypothesis

n time (seconds) † ratio lg ratio

250 0 –

500 0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8 3

8,000 51.1 8 3

seems to converge to a constant b ≈ 3

log2 (6.4 / 0.8) = 3.0

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

20

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

 
Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

 
 
 
 
 
 
 
 
 
Hypothesis. Running time is about 0.998 × 10 –10 × n3 seconds.

n time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

51.1 = a × 80003

⇒ a = 0.998 × 10 –10

almost identical hypothesis

to one obtained via regression

Analysis of algorithms quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds

B. 52 seconds

C. 117 seconds

D. 350 seconds

21

n time (seconds)

1,000 0.02

2,000 0.05

4,000 0.20

8,000 0.81

16,000 3.25

32,000 13.01

23

Experimental algorithmics

System independent effects.

・Algorithm.

・Input data.

 
System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …

 
 
 
 
 
 
Bad news. Sometimes difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

determines constant a

in power law a n b

determines exponent b

in power law a n b

Algorithmic experiments are virtually free by comparison with other sciences.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. No excuse for not running experiments to understand costs.

24

An aside

Physics
(1 experiment)

Chemistry
(1 experiment)

Biology
(1 experiment)

Computer Science
(1 million experiments)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

26

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

・Need to analyze program to determine set of operations.

・Cost depends on machine, compiler.

・Frequency depends on algorithm, input data.

Donald Knuth 
1974 Turing Award

Q. How many operations as a function of input size n ?

27

Example: 1-SUM

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation cost (ns) † frequency

variable declaration 2/5 2

assignment statement 1/5 2

less than compare 1/5 n + 1

equal to compare 1/10 n

array access 1/10 n

increment 1/10 n to 2 n

n array accesses

† representative estimates (with some poetic license)

How many array accesses as a function of n?

 
 
 
 
 

A. ½ n (n − 1)

B. n (n − 1)

C. n (n + 1)

D. 2 n2

Analysis of algorithms quiz 2

28

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

Q. How many operations as a function of input size n ?

1/4 n2 + 13/20 n + 13/10 ns
to

3/10 n2 + 3/5 n + 13/10 ns  

(tedious to count exactly)

30

Example: 2-SUM

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

operation cost (ns) frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n 2

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

Cost model. Use some basic operation as a proxy for running time.

31

Simplification 1: cost model

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

operation cost (ns) frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n 2

cost model = array accesses 
(we assume compiler/JVM do not

optimize any array accesses away!)

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

・Estimate running time (or memory) as a function of input size n.

・Ignore lower order terms.

 
Ex 1. ⅙ n 3 + 20 n + 16 ~ ⅙ n 3

Ex 2. ⅙ n 3 + 100 n 4/3 + 56 ~ ⅙ n 3

Ex 3. ⅙ n 3 - ½ n 2 + ⅓ n ~ ⅙ n 3

 

 

 

 

Rationale.

・When n is large, terms are negligible.

・When n is small, we don’t care.

 
Technical definition. f(n) ~ g(n) means

32

Simplification 2: tilde notation

discard lower-order terms 
(e.g., n = 1000: 166.67 million vs. 166.17 million)

lim
n��

f(n)

g(n)
= 1

Leading-term approximation

n 3/6

n (n! 1)(n! 2)/6

166,167,000

1,000

166,666,667

n

・Estimate running time (or memory) as a function of input size n.

・Ignore lower order terms.

33

Simplification 2: tilde notation

operation frequency tilde notation

variable declaration n + 2 ~ n

assignment statement n + 2 ~ n

less than compare ½ (n + 1) (n + 2) ~ ½ n 2

equal to compare ½ n (n − 1) ~ ½ n 2

array access n (n − 1) ~ n 2

increment ½ n (n + 1) to n 2 ~ ½ n 2 to ~ n 2

Q. Approximately how many array accesses as a function of input size n ?
 
 
 
 
 
 
 
 
A. ~ n 2 array accesses.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

34

Example: 2-SUM

“inner loop”

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

Q. Approximately how many array accesses as a function of input size n ?
 
 
 
 
 
 
 
 
A. ~ ½ n 3 array accesses.

 
 
 
 
 
Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

35

Example: 3-SUM

“inner loop”

�
n

3

�
=

n(n � 1)(n � 2)

3!

� 1

6
n3

36

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take a discrete mathematics course (COS 340).

37

Estimating a discrete sum

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral, and use calculus!

 
 
Ex 1. 1 + 2 + … + n.

 
 
Ex 2. 1 + 1/2 + 1/3 + … + 1/n.

 
 
Ex 3. 3-sum triple loop.

 
 
Ex 4. 1 + ½ + ¼ + ⅛ + …

��

i=0

�
1

2

�i

= 2

� �

x=0

�
1

2

�x

dx =
1

ln 2
� 1.4427

integral trick

doesn’t always work!

n�

i=1

i �
� n

x=1
x dx � 1

2
n2

n�

i=1

1

i
�

� n

x=1

1

x
dx � ln n

n�

i=1

n�

j=i

n�

k=j

1 �
� n

x=1

� n

y=x

� n

z=y
dz dy dx � 1

6
n3

38

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

[wayne:nobel.princeton.edu] > maple15
 |\^/| Maple 15 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2011
 \ MAPLE / All rights reserved. Maple is a trademark of
 <____ ____> Waterloo Maple Inc.
 | Type ? for help.
> factor(sum(sum(sum(1, k=j+1..n), j = i+1..n), i = 1..n));

 n (n - 1) (n - 2)

 6

In theory, accurate mathematical models are available.

 
In practice,

・Formulas can be complicated.

・Advanced mathematics might be required.

・Exact models best left for experts.

 
 
 
 
 
 
 
 
 
Bottom line. We use approximate models in this course: T(n) ~ c n 3.

Mathematical models for running time

39

Tn = c1 A + c2 B + c3 C + c4 D + c5 E
A = array access
B = integer add
C = integer compare
D = increment
E = variable assignment

frequencies

 (depend on algorithm, input)

costs (depend on machine, compiler)

Analysis of algorithms quiz 3

How many array accesses as a function of n ?
 

 
 
 

A. ~ n 2 lg n

B. ~ 3/2 n 2 lg n

C. ~ 1/2 n 3

D. ~ 3/2 n 3

40

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = 1; k < n; k = k*2)
 if (a[i] + a[j] >= a[k])
 count++;

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Definition. If f (n) ~ c g(n) for some constant c > 0, then the order of growth  
of f (n) is g(n).

・Ignores leading coefficient.

・Ignores lower-order terms.  

Ex. The order of growth of the running time of this code is n 3.
 
 
 
 
 
 
 
 
Typical usage. Mathematical analysis of running times.

Common order-of-growth classifications

42

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

where leading coefficient

depends on machine, compiler, JVM, ...

Good news. The set of functions 
 1, log n, n, n log n, n 2, n 3, and 2n

suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

43

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K
ti

m
e

ti
m

e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

Common order-of-growth classifications

44

order of

growth
name typical code framework description example T(2n) / T(n)

1 constant a = b + c; statement
add two

numbers
1

log n logarithmic
while (n > 1) 

{ n = n/2; ... }
divide

in half
binary search ~ 1

n linear
for (int i = 0; i < n; i++)

 { ... }
single

loop

find the

maximum
2

n log n linearithmic see mergesort lecture
divide and

conquer
mergesort ~ 2

n 2 quadratic
for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)
 { ... }

double

loop

check all

pairs
4

n 3 cubic

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)

 for (int k = 0; k < n; k++)
 { ... }

triple

loop

check all

triples
8

2n exponential see combinatorial search lecture
exhaustive

search

check all

subsets
2 n

45

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

 
Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

46

Binary search: implementation

Trivial to implement?

・First binary search published in 1946.

・First bug-free one in 1962.

・Bug in Java’s Arrays.binarySearch() discovered in 2006.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Invariant. If key appears in array a[], then a[lo] ≤ key ≤ a[hi].

 public static int binarySearch(int[] a, int key)
 {
 int lo = 0, hi = a.length - 1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

47

Binary search: Java implementation

one “3-way compare”

why not mid = (lo + hi) / 2 ?

48

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + log2 n key compares to search

in a sorted array of size n.

 
Def. T (n) = max # key compares to search a sorted subarray of length ≤ n.

 
Binary search recurrence. T (n) ≤ T (n / 2) + 1 for n > 1, with T (1) = 1.

 
 
Pf sketch. [assume n is a power of 2]

left or right half

(floored division)

possible to implement with one

2-way compare (instead of 3-way)

 T (n) ≤ T (n / 2) + 1 [given]

≤ T (n / 4) + 1 + 1 [apply recurrence to first term]

≤ T (n / 8) + 1 + 1 + 1 [apply recurrence to first term]

⋮

≤ T (n / n) + 1 + 1 + … + 1 [stop applying, T(1) = 1]

= 1 + log2 n log2 n

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

53

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 220 bytes.

Gigabyte (GB). 1 billion or 230 bytes.

 
 
 
64-bit machine. We assume a 64-bit machine with 8-byte pointers.

some JVMs “compress” ordinary object

pointers to 4 bytes to avoid this cost

NIST most computer scientists

54

Typical memory usage for primitive types and arrays

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

char[] 2n + 24

int[] 4n + 24

double[] 8n + 24

one-dimensional arrays

type bytes

char[][] ~ 2 m n

int[][] ~ 4 m n

double[][] ~ 8 m n

two-dimensional arrays

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

55

Typical memory usage for objects in Java

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable.

・Padding: round up to multiple of 8 bytes.

 
 
 
Note. Depending on application, we may want to count memory for 
any referenced objects (recursively).

56

Typical memory usage summary

+ 8 extra bytes per inner class object

(for reference to enclosing class)

Analysis of algorithms quiz 4

How much memory does a WeightedQuickUnionUF use as a function of n ?  

A. ~ 4 n bytes

B. ~ 8 n bytes

C. ~ 4 n 2 bytes

D. ~ 8 n 2 bytes

57

public class WeightedQuickUnionUF
{
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n)
 {
 parent = new int[n];
 size = new int[n];
 
 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Turning the crank: summary

Empirical analysis.

・Execute program to perform experiments.

・Assume power law.

・Formulate a hypothesis for running time.

・Model enables us to make predictions.

 
Mathematical analysis.

・Analyze algorithm to count frequency of operations.

・Use tilde notation to simplify analysis.

・Model enables us to explain behavior.

 
Scientific method.

・Mathematical model is independent of a particular 
system; applies to machines not yet built.

・Empirical analysis is necessary to validate 
mathematical models and to make predictions.

59

�lg n��

h=0

�n/2h+1� h � n

