1. **Initialization.**

 Don't forget to do this.

2. **Memory.**

 \[\approx 48n \text{ bytes} \]

 Each Node object requires 48 bytes: object overhead (16 bytes), 3 references (24 bytes), char (2 bytes), int (4 bytes), padding (2 bytes).

3. **Running time.**

 E D D D D E

4. **String sorts.**

 A Original input
 C MSD radix sort after the second call to key-indexed counting
 D 3-way radix quicksort after the first partitioning step
 C MSD radix sort after the first call to key-indexed counting
 B LSD radix sort after 1 pass
 D 3-way radix quicksort after the second partitioning step
 E Sorted

5. **Depth-first search.**

 (a) 0 2 1 7 6 8 4 5 3 9
 (b) 1 6 8 7 2 9 3 5 4 0
 (c) Explanation 1: There cannot be a topological order because of the directed cycle 5 \(\rightarrow \) 3 \(\rightarrow \) 9 \(\rightarrow \) 5.

 Explanation 2: The reverse of the postorder from (b) is not a topological order because 9 appears before 3 in the reverse postorder and 3 \(\rightarrow \) 9 is an edge.
 0 4 8 5 9 2 3 1 7 6

7. Maximum flow.
 (a) 50 = 9 + 3 + 38
 (b) 78 = 29 + 12 + 37
 (c) 5
 (d) \(A \rightarrow B \rightarrow C \rightarrow H \rightarrow I \rightarrow D \rightarrow J\)
 (e) The unique mincut is \{A, B, C, F, G\}.

8. LZW compression.
 (a) C A A C A B C A B A

 \[
 \begin{array}{c|c}
 i & \text{codeword} \\
 \hline
 81 & CA \\
 82 & AA \\
 (b) 83 & AC \\
 84 & CAB \\
 85 & BC \\
 86 & CABA \\
 \end{array}
 \]

 TIGER, TO, TOO, TRIE

\[
\begin{array}{c|cccccccc}
\text{A} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\text{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{B} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{C} & 1 & 2 & 2 & 4 & 5 & 2 & 7 & 5 \\
\text{s} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

s C C A C C A C B
11. Programming assignments.

(a) There is exactly one vertex of outdegree 0.
☐ There is exactly one vertex of indegree 0.
☐ There are no directed cycles.
☐ There is a directed path between every pair of vertices.
☐ There are \(V - 1 \) edges, where \(V \) is the number of vertices.
☐ There are \(E - 1 \) vertices, where \(E \) is the number of edges.

(b) WH

(c) A achieves a better compression ratio than B.
☐ C achieves a better compression ratio than A.
☐ E achieves a better compression ratio than A.
☐ D achieves the best compression ratio among A–E.

(d) Percolation, WordNet, SeamCarving

 A C C A C

 B C A D C

14. Regular expressions.

 (a) \((A* | (AB*A)+)\)
 (b) \(1 2 3 6 7 8 11 12\)
15. **Shortest discount path.**

Use the graph-doubling trick (ala **Shortest-Princeton-Path** from the Spring 2015 Final) and create a digraph G' with $2V$ vertices and $3E$ edges as follows:

- For each vertex v in G: create two vertices v and v'.
- For each edge $v \to w$ in G: create the three edges $v \to w$, $v' \to w'$, and $v \to w'$. The weight of $v \to w$ and $v' \to w'$ equals the weight of e; the weight of $v \to w'$ is one-half that weight.

A shortest path from s to t' corresponds to a shortest discount path: the one edge in the path going from the first copy of the digraph to the second copy corresponds to the discounted edge.
16. **Substring of a circular string.**

Let u denote the string containing the first $m + n$ characters of the (infinite) circular string t. Do a substring search of the query string s in the text string u. If we use Knuth–Morris–Pratt, the overall running time will be proportional to $m + n$ in the worst case (m to build the DFA and $m + n$ to simulate it on string u).

Here are two examples, one with $m < n$ and one with $m > n$:

- $s = \text{ABBA}$, $t = \text{BABBBBBABBBBBAB}$, $m = 4$, $n = 15$. Search for the query string $s = \text{ABBA}$ in the text string $u = \text{BABBBBBABBBBBABBA}$.
- $s = \text{BBAABBAABBAABB}$, $t = \text{ABBA}$, $m = 14$, $n = 4$. Search for the query string $s = \text{BBAABBAABBAABB}$ in the text string $u = \text{ABBAABBAABBAABBAA}$.

Note 1: Two copies of t is not enough when $m >> n$; $\lceil m/n \rceil$ copies of t is not enough when $m < n$.

Note 2: It simplest to form the string u explicitly, but you can also run Knuth–Morris–Pratt on u implicitly by building the DFA for s and simulating it on t, wrapping around to the beginning of t after you reach the end of t. In this case, you need to be careful about when to stop the simulation if no match is found: $m + n$ DFA transitions suffice.