2D tree Demo

- insertion
- range search
- nearest neighbor
2D tree Demo

- insertion
- range search
- nearest neighbor
2d tree demo

Points to insert.

% more input10.txt
0.372 0.497
0.564 0.413
0.226 0.577
0.144 0.179
0.083 0.510
0.320 0.708
0.417 0.362
0.862 0.825
0.785 0.725
0.499 0.208
2d tree demo: insertion

Recursively partition plane into two halfplanes.
2d Tree Demo

- insertion
- range search
- nearest neighbor
Goal. Find all points in a query axis-aligned rectangle.

(xmin, ymin, xmax, ymax) = (0.053, 0.393, 0.106, 0.683)
Goal. Find all points in a query axis-aligned rectangle.
 • Check if point in node lies in given rectangle.
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

search left subtree
check if query rectangle contains point C
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

search left subtree
check if query rectangle contains point D
2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

Diagram:
- Green rectangle represents the query rectangle.
- Black dots indicate points.
- Blue line indicates search left subtree path.
- Gray dots are nodes in the 2D tree.

Search left subtree check if query rectangle contains point E (search hit)
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

search top subtree

check if query rectangle contains point F
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

2d tree demo: range search

return from function call
2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

2d tree demo: range search
2D tree Demo

- insertion
- range search
- nearest neighbor
2d tree demo: nearest neighbor

Goal. Find closest point to query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

query point is to the left of splitting line
search left subtree first
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

search left subtree
compute distance from query point to C
(update champion)
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

query point is above splitting line
search top subtree first
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

search top subtree
compute distance from query point to F
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

query point is to left of splitting line
search left subtree first
• Check distance from point in node to query point.
• Recursively search left/bottom (if it could contain a closer point).
• Recursively search right/top (if it could contain a closer point).
• Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

search left subtree
compute distance from query point to E
(update champion)
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

query point is above splitting line
search top subtree first
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

return from function call
search right subtree next
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

return from function call
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

search right subtree
prune since nearest neighbor
can’t be here
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

nearest neighbor = E