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Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop i scan because ali] >= allo]
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Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].
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Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop j scan because a[j] <= a[lo]



Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o] with a[j].
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Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o] with a[j].

partitioned!



2.3 PARTITIONING DEMOS

» Dijkstra 3-way partitioning

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
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> v): exchange a[gt] with a[i]; decrement gt
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D B X W P> Ps3 V P4 A Ps C Y Z

)

lo



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

unknown

equal



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

unknown
less equal



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

less unknown



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.

less

L7]
[1]

L7]

< v): exchange a[1t] with a[i]; increment both 1t and i

> v): exchange a[gt] with a[i]; decrement gt

== V).

iIncrement 1

P3

V P4

unknown

A

greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].
« Scan i from left to right.

- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

Ps3 \Y P4 A Ps C

less unknown

greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].
« Scan i from left to right.

- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

Ps3 \Y P4 A Ps

less unknown

greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
\ v
n W P> P3 V P4 A Ps
less unknown greater

equal



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v

Ps3 \Y P4 A

less unknown greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v

. LA

less equal unknown greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v

V P4 A

less equal unknown greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

|t i gt

\

v v
S R

less equal unknown greater




Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v
DR -

less equal greater
unknown



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v
less equal greater

unknown



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

It gt i

v v v
EEEDR

less equal greater



Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
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Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

.
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If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.
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If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.
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Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].
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« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].
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Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
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Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].
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Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].
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Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.
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Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].
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Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].
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Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

exchange a[i] with a[q]
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Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].
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Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.

« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].
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3-way partitioned
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Dual-pivot partitioning demo

Initialization.
« Choose a[1o] and a[hi] as partitioning items.
« Exchange if necessary to ensure a[lo] < arlhi].

exchange a[lo] and afhi]



Dual-pivot partitioning demo

Initialization.
« Choose a[lo] and a[hi] as partitioning items.
« Exchange if necessary to ensure a[lo] < arlhi].




Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 ) 0 ) )
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Main loop. Repeat until i and gt pointers cross.
. If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.
« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.
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Dual-pivot partitioning demo

Finalize.
« Exchange a[lo] with a[--11].
« Exchange al[hi] with a[++gt].
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Dual-pivot partitioning demo

Finalize.
« Exchange a[lo] with a[--1].
« Exchange al[hi] with a[++gt].
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