A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

2.3 PARTITIONING DEMOS

» Sedgewick 2-way partitioning

» Dijkstra 3-way partitioning

» Bentley—Mcllroy 3-way partitioning
» dual-pivot partitioning

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.3 PARTITIONING DEMOS

» Sedgewick 2-way partitioning

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).

« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).

« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop j scan and exchange ali] with aj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

-

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

-

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop i scan because ali] >= allo]

-

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop j scan and exchange ali] with aj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

L E
)))
lo i J

stop j scan and exchange ali] with aj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop i scan because ali] >= allo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

stop j scan because a[j] <= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o] with a[j].

pointers cross: exchange a[lo] with alj]

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o] with a[j].

partitioned!

2.3 PARTITIONING DEMOS

» Dijkstra 3-way partitioning

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.

It i

vy

L7]
[1]

L7]

< v): exchange a[1t] with a[i]; increment both 1t and i
> v): exchange a[gt] with a[i]; decrement gt
== v):. Increment i

D B X W P> Ps3 V P4 A Ps C Y Z

)

lo

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

unknown

equal

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

unknown
less equal

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

less unknown

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.

less

L7]
[1]

L7]

< v): exchange a[1t] with a[i]; increment both 1t and i

> v): exchange a[gt] with a[i]; decrement gt

== V).

iIncrement 1

P3

V P4

unknown

A

greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].
« Scan i from left to right.

- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

Ps3 \Y P4 A Ps C

less unknown

greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].
« Scan i from left to right.

- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

Ps3 \Y P4 A Ps

less unknown

greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
\ v
n W P> P3 V P4 A Ps
less unknown greater

equal

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v

Ps3 \Y P4 A

less unknown greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v

. LA

less equal unknown greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v

V P4 A

less equal unknown greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

|t i gt

\

v v
S R

less equal unknown greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v v
DR -

less equal greater
unknown

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i
|t i gt
v v
less equal greater

unknown

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

It gt i

v v v
EEEDR

less equal greater

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i]l] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): Increment i

lo It gt hi

v v
EEEDR

less equal greater

2.3 PARTITIONING DEMOS

Alg orithms » Bentley-Mcllroy 3-way partitioning

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.

If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

{ S

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

exchange a[i] with a[j]

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

S

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

S

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

exchange a[i] with a[j]

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.

« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] ==
If (a[j] ==

a[lo]), exchange a[i] with a[p] and increment p.
al[l1o]), exchange a[j] with a[q] and decrement q.

.

exchange a[i] with a[p] and increment p

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

P

v
mm
)

lo |

.

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

P

v
mm
)

lo i

.

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

P

v
mm
)

lo i j

exchange a[i] with a[j]

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

P

v
on
)

lo i j

exchange a[j] with a[q] and decrement q

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P q

v
Hi
)

lo i

—

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P q

v
Hi
)

lo i

—

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P d

v v
S P v
)) ?
lo i]

exchange a[i] with a[j]

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P d

v v
S P v
)) ?
lo i]

exchange a[i] with a[p] and increment p

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P d

v v
I v
)) ?
lo i]

exchange a[j] with a[q] and decrement q

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P q

| !
HI V P
A)

lo i j hi

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P q

| !
HI V P
A)

lo i j hi

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P q

| !
HI V P
A)

lo i hi

Bentley - Mcllroy 3-way partitioning demo

Phase |. Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

Scan j from right to left so long as (a[j] > a[lo]).

Exchange a[i] with a[j].

If (a[i] == a[l10]), exchange a[i] with a[p] and increment p.
If (a[j] == a[l0]), exchange a[j] with a[q] and decrement q.

P q

| !
A)

lo hi

.

pointers cross

Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

P q

v
)

lo

.

exchange a[j] with a[p]

Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

.

exchange a[j] with a[p]

Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

p
v
)

lo

—

exchange a[j] with a[p]

Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

exchange a[i] with a[q]

Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.
« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

L L

lo j |

exchange a[i] with a[q]

Bentley - Mcllroy 3-way partitioning demo

Phase Il. Swap equal keys to the center.

« Scan j and p from right to left and exchange a[j] with a[p].
« Scan i and g from left to right and exchange a[i] with a[q].

r T

lo j |

3-way partitioned

2.3 PARTITIONING DEMOS

Algorithms

» dual-pivot partitioning

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dual-pivot partitioning demo

Initialization.
« Choose a[1o] and a[hi] as partitioning items.
« Exchange if necessary to ensure a[lo] < arlhi].

exchange a[lo] and afhi]

Dual-pivot partitioning demo

Initialization.
« Choose a[lo] and a[hi] as partitioning items.
« Exchange if necessary to ensure a[lo] < arlhi].

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0) 0))
lo It i gt hi

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat unti
If (a[i] < a[lo]

i and gt pointers cross.
), exchange a[i] with a[1t] and increment 1t and 1.

e Else if (a[i] > a[hi:
« Else, increment 1.

), exchange a[i] with a[gt] and decrement gt.

o} < pi p1 < and < p2 > P2

P2

lo

It i

lo

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
. If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.
« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
e« If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
e« If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
e« If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It i gt hi

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat unti
o If (a[i] < a[lo]

e Else if (a[i] > a[hi:
« Else, increment 1.

i and gt pointers cross.

), exchange a[i] with a[1t] and increment 1t and 1.
), exchange a[i] with a[gt] and decrement gt.

P < p p1 < and < p2 ¢ > P2 P2

0) 0))

lo It i gt hi
V / Q T C

)) T))

lo

hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It i gt hi

exchange ali] and a|lt]; increment It and i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

VA Q T
1 1 t 1 1
lo It i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
o If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

T Q
1 1 t t 1
lo It i gt hi

exchange ali] and a[gt]; decrement gt

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
e« If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.

« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

Q
1 1 () 1
lo It i gt hi

increment i

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.
. If (a[i] < a[lo]), exchange a[i] with a[1t] and increment 1t and 1.
« Else if (a[i] > a[hi]l), exchange a[i] with a[gt] and decrement gt.
« Else, increment 1.

P < p p1 < and < p2 ¢ > P2 P2
0 0))
lo It i gt hi

lo It gt i hi

stop when pointers cross

Dual-pivot partitioning demo

Finalize.
« Exchange a[lo] with a[--11].
« Exchange al[hi] with a[++gt].

P < pi p1 < and < p2 > P2 P2
) t t
lo It gt hi

lo It gt hi

Dual-pivot partitioning demo

Finalize.
« Exchange a[lo] with a[--1].
« Exchange al[hi] with a[++gt].

< P o} p1 < and < p2
))
lo It

3-way partitioned

P2

gt

>

P2

hi

