
Page 1

REFERENCE MATERIAL FOR COS217 FINAL EXAM

A Subset of x86-64 Assembly Language

Syntax Semantics Description
mov{q,l,w,b} srcIRM, destRM dest = src; Move. Copy src to dest.Flags affected:

None.
push{q,w} srcIRM reg[RSP] = reg[RSP] - {8,2};

mem[reg[RSP]] = src;
Push. Push src onto the stack. Flags

affected: None.
pop{q,w} destRM dest = mem[reg[RSP]];

reg[ESP] = reg[RSP] + {8,2};

Pop. Pop from the stack into dest. Flags

affected: None.
lea{q,l,w} srcM, destR dest = &src; Load Effective Address. Assign the

address of src to dest. That is, determine

the address denoted by src, but don't fetch
data from that address; instead use the

address itself. Flags affected: None.
add{q,l,w,b} srcIRM,
 destRM

dest = dest + src; Add. Add src to dest. Flags affected: O, S,

Z, A, C, P.
add{q,l,w,b} srcIRM,
 destRM

dest = dest + src; Add. Add src to dest. Flags affected: O, S,

Z, A, C, P.
imul{q,l,w} srcIRM, destR

dest = dest * src;

Multiply. Multiply dest by src. Flags
affected: O, S, Z, A, C, P.

imulq srcRM reg[RDX:RAX] = reg[RAX]*src; Signed Multiply. Multiply the contents of

register RAX by src, and store the product

in registers RDX:RAX. Flags affected: O,
S, Z, A, C, P.

imull srcRM reg[EDX:EAX] = reg[EAX]*src;

Signed Multiply. Multiply the contents of

register EAX by src, and store the product
in registers EDX:EAX. Flags affected: O,

S, Z, A, C, P.
idivq srcRM reg[RAX] = reg[RDX:RAX]/src;

reg[RDX] = reg[RDX:RAX]%src;
Signed Divide. Divide the contents of

registers RDX:RAX by src, and store the
quotient in register RAX and the remainder

in register RDX. Flags affected: O, S, Z, A,

C, P.
idivl srcRM reg[EAX] = reg[EDX:EAX]/src;

reg[EDX] = reg[EDX:EAX]%src;
Signed Divide. Divide the contents of

registers EDX:EAX by src, and store the

quotient in register EAX and the remainder
in register EDX. Flags affected: O, S, Z, A,

C, P.
mulq srcRM reg[RDX:RAX] = reg[RAX]*src; Unsigned Multiply. Multiply the contents

of register RAX by src, and store the
product in registers RDX:RAX. Flags

affected: O, S, Z, A, C, P.
mull srcRM

reg[EDX:EAX] = reg[EAX]*src;

Unsigned Multiply. Multiply the contents
of register EAX by src, and store the

product in registers EDX:EAX. Flags

affected: O, S, Z, A, C, P.
sal{q,l,w,b} srcIR, destRM dest = dest << src;

Shift Arithmetic Left. Shift dest to the left

src bits, filling with zeros. If src is a

register, then it must be the CL register.
Flags affected: O, S, Z, A, C, P.

sar{q,l,w,b} srcIR, destRM dest = dest >> src;

Shift Arithmetic Right. Shift dest to the

right src bits, sign extending the number. If

src is a register, then it must be the CL
register. Flags affected: O, S, Z, A, C, P.

cmp{q,l,w,b} srcIRM,
 destRM

reg[EFLAGS] =

 dest comparedWith src;
Compare. Compute dest - src and set flags

in the EFLAGS register based upon the
result. Flags affected: O, S, Z, A, C, P.

test{q,l,w,b} srcIRM,
 destRM

reg[EFLAGS] = dest & src; Test. Compute dest & src and set flags in

the EFLAGS register based upon the

result. Flags affected: S, Z, P (O and C set
to 0).

Page 2

jmp label reg[RIP] = label; Jump. Jump to label. Flags affected:

None.
jmp *srcRM reg[RIP] = reg[src]; Jump indirect. Jump to the address in src.

Flags affected: None.

j{e,ne,

 l,le,g,ge,

 b,be,a,ae} label

if (reg[EFLAGS] appropriate)

 reg[RIP] = label;
Conditional Jump. Jump to label iff the

flags in the EFLAGS register indicate a(n)
equal to, unequal to, less than, less than or

equal to, greater than, greater than or equal

to, below, below or equal to, above, or
above or equal to (respectively)

relationship between the most recently

compared numbers. The l, le, g, and ge
forms are used after comparing signed

numbers; the b, be, a, and ae forms are

used after comparing unsigned numbers.
Flags affected: None.

call label reg[RSP] = reg[RSP] - 8;

mem[reg[RSP]] = reg[RIP];

reg[RIP] = label;

Call. Call the function that begins at label.

Flags affected: None.

call *srcRM reg[RSP] = reg[RSP] - 8;

mem[reg[RSP]] = reg[RIP];

reg[RIP] = reg[src];

Call indirect. Call the function whose

address is in src. Flags affected: None.

Ret reg[RIP] = mem[reg[RSP]];

reg[RSP] = reg[RSP] + 8;

Return. Return from the current function.
Flags affected: None.

Syntax Description
label: Record the fact that label marks the current location within the current section.
.section ".sectionname" Make the sectionname section the current section.

.skip n Skip n bytes of memory in the current section.

.long longvalue1, longvalue2, ... Allocate four bytes of memory containing longvalue1, four bytes of memory

containing longvalue2, ... in the current section.

.quad quadvalue1, quadvalue2, ... Allocate eight bytes of memory containing quadvalue1, eight bytes of memory

containing quadvalue2, ... in the current section.

.globl label1, label2, ... Mark label1, label2, ... so they are accessible by code generated from other

source code files.

.equ name, expr Define name as a symbolic alias for expr.

.type label,@function Mark label so the linker knows that it denotes the beginning of a function.

General purpose registers
Arguments: rdi, rsi, rdx, rcx, r8, r9

Caller-saved: Arguments + rax, r10, r11

Callee-saved: rbx, rbp, r12, r13, r14, r15,

Stack pointer: rsp

Operands
Type From Operand Value Name
Immediate $Imm Imm Immediate

Register %r R[%r] Register

Memory Imm M[Imm] Absolute

Memory (%r) M[R[%r]] Indirect

Memory d(%r) M[d+R[%r]] Base+Displacement

Memory d(,%r,n) M[d+R[%r]*n] Scaled Indexed

Memory d(%b,%r,n) M[d+R[%b]+R[%r]*n] Scaled Indexed with base

