
Page 1 of 5

Princeton University

COS 217: Introduction to Programming Systems

Fall 2017 Final Exam Preparation

The exam is a three-hour, closed-book, closed-notes, closed-handouts exam. The exam is cumulative, but

emphasizes second-half material. NO "cheat-sheets." During the exam you may not use computers,

calculators, or other electronic devices.

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This

is a nonexhaustive list of topics that were covered. Topics in boldface are key concepts to study for the

exam. Topics crossed out are important concepts but will not be tested on the final exam.

1. Number Systems

The binary and hexadecimal number systems

Finite representation of unsigned integers

Operations on unsigned integers

Finite representation of signed integers

Two's complement
Operations on signed integers

2. C Programming

The program preparation process: preprocess, compile, assemble, link

Program structure: multi-file programs using header files

Process memory layout: text, stack, heap, rodata, data, bss sections

Data types

Variable declarations and definitions

Variable scope, linkage, and duration/extent

Constants: #define, constant variables, enumerations

Operators

Statements

Function declarations and definitions

Pointers and arrays

Call-by-reference, arrays as parameters, strings

Command-line arguments

Input/output facilities for standard streams and files, and for text and binary data

Structures

Dynamic memory management

malloc(), calloc(), realloc(), free()

Common errors: dereference of dangling pointer, memory leak, double free

Abstract objects

Abstract data types; opaque pointers

Generic data structures and functions

Void pointers

Function pointers and function callbacks

Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large

Page 2 of 5

Testing

Test Coverage: statement, path, boundary, stress, regression

Internal testing techniques: validate parameters, check invariants, check function

return values, change code temporarily, leave testing code intact

External Testing

Unit testing

 Building

Separate independent paths before link

Motivation for make, make fundamentals, macros, abbreviations, pattern rules

Program and programming style

Bottom-up design, top-down design, least-risk design

Debugging

General heuristics for debugging: understand error messages, think before writing, look

for familiar bugs, divide and conquer, add more internal tests, display output, use a

debugger, focus on recent changes

Heuristics for debugging dynamic memory management: look for common DMM bugs,

diagnose seg faults using gdb, manually inspect malloc() calls, comment-out

free() calls, use Meminfo, use Valgrind

Data Structures and algorithms

Linked lists

Hash tables: hashing algorithms, defensive copies, key ownership

Arrays

Strings

Modularity

Abstract data types

Module qualities: encapsulates data, is consistent, has a minimal interface, detects

and handles/reports errors, establishes contracts, strong cohesion, weak coupling

"Ownership" as a module-interface concept

Performance improvement

When to improve performance

Improving execution (time) efficiency: do timing studies, identify hot spots, use a better

algorithm, enable compiler speed optimization, tune the code

How to use and interpret a memory profiling tool (oprofile or gprof)

Case study of performance profiling: details of buzz.c program
Improving memory (space) efficiency: use a smaller data type, compute instead of

storing, enable compiler space optimization

4. Under the Hood: Language Levels Tour

Language levels

High-level vs. assembly vs. machine language

Computer architecture

The Von Neumann architecture

RAM

CPU: control unit, ALU, registers

Big-endian vs. little-endian byte order

CISC vs. RISC architectures

x86-64 computer architecture

These 3 lists will be given to you on the exam, so you don't have to memorize them:

 Argument registers are RDI, RSI, RDX, RCX, R8, R9.

 Caller-save are RDI, RSI, RDX, RCX, R8, R9, RAX, R10, R11.

 Callee-save are RBX, RBP, R12, R13, R14, R15.

Sub-registers: RAX, EAX, AX, AH, AL, …

Special purpose registers: EFLAGS, RIP

Page 3 of 5

x86-64 assembly language

You will have to read and/or write assembly language on the exam. You shouldn't

need to know the entire x86-64 instruction set; the instructions that you used in the

homeworks, or that appear in assembly language programs in lecture slides, should

be enough to study.

Instructions: directives and mnemonics

Defining data

Transferring data

Performing arithmetic

Manipulating bits

Instruction operands

Immediate vs. register vs. memory

Control flow

Unconditional jumps

Conditional jumps

Condition code bits in EFLAGS register

Set by cmp instruction (and other instructions)

Examined by conditional jump instructions

Conditional jumps with signed data

Conditional jumps with unsigned data

Data structures

Arrays

Full form of memory operands

Direct, indirect, base+displacement, indexed, scaled-indexed

addressing

Structures

Padding

Local variables

The stack section and the RSP register

x86-64 function call conventions

Calling and returning

The call and ret instructions

Passing arguments

Returning a value

Optimization

When and how to use caller-save and callee-save registers

x86-64 machine language

Instruction format: prefix, opcode, modR/M, SIB, displacement, immediate fields

Machine language after assembly

Data section, rodata section, bss section, text section, relocation records

Exact format of relocation records

Machine language after linking

Resolution: Fetch library code

Relocation: Use relocation records to patch code

Output: data section, rodata section, bss section, text section

5. Under the Hood: Service Levels Tour

Exceptions and processes

Exceptions

Synchronous vs. asynchronous

Interrupts, traps, faults, and aborts

Traps and system-level functions in x86-64

The process abstraction

The illusion of private address space

Reality: virtual memory via page faults

Page 4 of 5

The illusion of private control flow

Reality: context switches during exception handling

Storage management

Locality of reference and caching

Typical storage hierarchy: registers vs. cache vs. memory vs. local secondary

storage vs. remote secondary storage

Virtual memory

Implementation of virtual memory

Virtual addresses vs. physical addresses

Page tables, page faults

Benefits of virtual memory

Dynamic memory management (DMM)

The need for DMM

DMM using the heap section

The brk() and sbrk() system-level functions

Internal and external fragmentation

Free-list, doubly-linked free list, bin implementations

Singly linked, unsorted free list that can’t support coalescing

Segregated metadata as a means of reducing per-record overhead

DMM using virtual memory

The mmap() and munmap() system-level functions

Process management

Creating processes

The getpid() and fork() system-level function

Waiting for (reaping, harvesting) processes

The wait() system-level function

Executing new programs

The execvp() system-level functions

The system() function

I/O management

The file abstraction

Linux I/O

File descriptors, file descriptor tables, file tables

Unix I/O system calls

Standard C I/O

 C’s Standard IO library (FILE *)

Buffering

Implementing standard C I/O using Linux I/O

Redirecting standard files

The dup() and dup2() system-level functions

 Inter-Process Communication (Pipes)

 The pipe() system level function

Setting up the file descriptor table to communicate data between processes

via pipes

 Ethics in engineering, and another example of stack-smashing

6. Applications

De-commenting

Lexical analysis using finite state automata

String manipulation

Symbol tables, linked lists, hash tables

Dynamically expanding arrays

High-precision addition

Buffer overrun attacks

Heap management

Page 5 of 5

Othello Referee Program (Processes and Inter-Process Communication)

7. Tools: The Unix/GNU programming environment

Unix/Linux
bash
emacs
gcc

gdb for C

make

oprofile, gprof

gdb for assembly language

objdump

Readings

As specified by the course "Schedule" Web page.

Required:

C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22

Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.11), 8.1-4, 8.5, 9

Communications of the ACM "Detection and Prevention of Stack Buffer Overflow Attacks"

The C Programming Language (Kernighan & Ritchie) 8.7

Recommended:

Computer Systems (Bryant & O'Hallaron): 2, 5, 6, 7, 10

The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8

Unix Tutorial for Beginners (website)

GNU Emacs Tutorial (website)

Deterministic Finite Automaton Wikipedia article (website)

GNU GDB Tutorial (website)

GNU Make Tutorial (website)

Security as a Class of Interface Guarantee (website)

Recommended, for reference only:

 C Programming (King): 21

 OProfile Manual (website)

Intel 64 and IA-32 Architectures Software Developer's Manual: Vol 1: Basic Architecture

Intel 64 and IA-32 Architectures Software Developer's Manual: Vol 2: Instruction Set Reference

Intel 64 and IA-32 Architectures Software Developer's Manual: Vol 3: System Prog. Guide

Intel 64 and IA-32 Architectures Optimization Reference Manual

Using As

Copyright © 2017 by Iasonas Petras and Andrew W. Appel

