
1

Modules and Interfaces

Princeton University
Computer Science 217: Introduction to Programming Systems

1

A Fable (by John C. Reynolds, 1983)

Once upon a time, there was a university with a
peculiar tenure policy. All faculty were tenured, and
could only be dismissed for moral turpitude:
making a false statement in class. Needless to say,
the university did not teach computer science.
However, it had a renowned department of
mathematics.

One semester, there was such a large enrollment
in complex variables that two sections were
scheduled. In one section, Professor Descartes
announced that a complex number was an ordered
pair of reals, and that two complex numbers were
equal when their corresponding components were
equal. He went on to explain how to convert reals
into complex numbers, what “i” was, how to add,
multiply, and conjugate complex numbers, and how
to find their magnitude.

In the other section, Professor Bessel announced
that a complex number was an ordered pair of reals
the first of which was nonnegative, and that two
complex numbers were equal if their first
components were equal and either the first
components were zero or the second components
differed by a multiple of 2π. He then told an
entirely different story about converting reals, “i”,
addition, multiplication, conjugation and magnitude.

Then, after their first classes, an unfortunate
mistake in the registrar’s office caused the two
sections to be interchanged. Despite this, neither
Descartes nor Bessel ever committed moral
turpitude, even though each was judged by the
other’s definitions. The reason was that they both
had an intuitive understanding of type. Having
defined complex numbers and the primitive

(2,1) + (1,2) = (3,3)

x

y (x,y)

Re(x,y) = x
Im(x,y) = y
inj(x) = (x , 0)
i = (0,1)

(r1,θ1) ⨯ (r2,θ2) = (r1r2, θ1+θ2)

θ
(r,θ)

Re(r,θ) = r cosθ
Im(r,θ) = r sinθ

inj(x) = (x , 0)
i = (1, π/2)r

r

2

A Fable

operations upon them, thereafter they spoke at a
level of abstraction that encompassed both of their
definitions.

The moral of this fable is that:

Type structure is a syntactic discipline for enforcing
levels of abstraction.

For instance, when Descartes introduced the
complex plane, this discipline prevented him from
saying Complex=Real⨯Real, which would have
contradicted Bessel’s definition. Instead, he defined
the mapping f: Real⨯Real→Complex such that
f(x,y)=x+i⨯y, and proved that this mapping is a
bijection.

. . .

More precisely, there is no such thing as the set of
complex numbers. Instead, the type “Complex”
denotes an abstraction that can be realized or
represented by a variety of sets

John C. Reynolds.
Types, abstraction, and parametric polymorphism.
Proceedings of the 9th IFIP World Computer Congress, 1983.

3

Retelling the Fable

Once upon a time, two software engineering
teams were each building a library catalog system.
In one team, the team leader Dr. Dondero
announced that a symbol table was a linked list of
pairs.

He then went on to define “put” and “get”
operations on symbol tables.

In the other team, Dr. Petras announced that a
symbol table was an array of linked lists, indexed by
a “hash” value.

He then told an entirely different story about
“put” and “get.”

Then, after their first team meetings, an IPO
caused the two teams to exchange leaders. Each
team built a library catalog system using symbol
tables with “add” and “lookup,” even though each
team was using the other team’s implementation of
symbol tables. The reason was that Dr. Dondero
and Dr. Petras respected the discipline of abstract
data types: access the symbol table only through its
operations, “put” and “get.”

4 3

NULL

R u t h \0

G e h r \0i g

NULL

4

"Gehrig"

NULL

3

"Ruth"

NULL

NULL

NULL0

1

806

23

723

…

…

…

…

int SymTable_put(

SymTable_T oSymTable,

const char *pcKey,

const void *pvValue);

void *SymTable_get(

SymTable_T oSymTable,

const char *pcKey);

4

Retelling the Fable

Finally, the team that was using the linked-list
implementation realized that their performance
was slow on large datasets: O(N2) time. They
simply substituted the hash-table implementation,
and (other than that) not a single line of code had to
be changed.

5

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms (done)

• Modularity <-- we are here

• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools

66

Goals of this Lecture

Help you learn:
• How to create high quality modules in C

Why?
• Abstraction is a powerful (the only?) technique available for

understanding large, complex systems

• A software engineer knows how to find the abstractions in a large

program

• A software engineer knows how to convey a large program’s

abstractions via its modularity

This is one of the two most important things that will get you

promoted from programmer to team leader (. . . to CTO)

(what’s the other thing? Hint: it’s on the other side of Washington Road) 77

Abstract Data Type (ADT)

A data type has a representation

and some operations:

struct Node {

int key;

struct Node *next;

};

struct List {

struct Node *first;

};

struct List * new(void) {

struct List *p;

p=(struct List *)malloc (sizeof *p);

assert (p!=NULL);

p->first = NULL;

return p;

}

void insert (struct list *p, int key) {

struct Node *n;

n = (struct Node *)malloc(sizeof *n);

assert (n!=NULL);

n->key=key; n->next=p->first; p->first=n;

} 8

struct List;

struct List * new(void);

void insert (struct list *p, int key);

void concat (struct list *p,

struct list *q);

int nth_key (struct list *p, int n);

An abstract data type has a hidden

representation; all “client” code

must access the type through its

interface operations:

Barbara Liskov, a pioneer in CS

"An abstract data type defines a class of abstract
objects which is completely characterized by the
operations available on those objects. This means
that an abstract data type can be defined by defining
the characterizing operations for that type."

Barbara Liskov and Stephen Zilles.

"Programming with Abstract Data Types."

ACM SIGPLAN Conference on Very

High Level Languages, April 1974.

9

Specifications

If you can’t see the representation (or
the implementations of insert,

concat, nth_key), then how are

you supposed to know what they do?

struct List;

struct List * new(void);

void insert (struct list *p, int key);

void concat (struct list *p,

struct list *q);

int nth_key (struct list *p, int n);

A List p represents a sequence of integers σ.

Operation new() returns a list p representing the empty sequence.

Operation insert(p,i), if p represents σ, causes p to now represent i ∙σ.

Operation concat(p,q), if p represents σ1 and q represents σ2, causes p to

represent σ1∙σ2 and leaves q representing σ2.

Operation nth_key(p,n), if p represents σ1∙i ∙σ2 where the length of σ1 is n,
returns i ; otherwise (if the length of the string represented by p is ≤n), it
returns an arbitrary integer.

10

Reasoning about client code
struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

A List p represents a sequence of integers σ.

Operation new() returns a list p
representing the empty sequence.

Operation insert(p,i), if p represents σ,
causes p to now represent i ∙σ.

Operation concat(p,q), if p represents σ1

and q represents σ2, causes p to represent
σ1∙σ2 and leaves q representing the empty
string.

Operation nth_key(p,n), if p represents

σ1∙i ∙σ2 where the length of σ1 is n, returns i ;
otherwise (if the length of the string
represented by p is ≤n), it returns an
arbitrary integer.

int f(void) {

struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

p:[]

p:[] q:[]

p:[6] q:[]

p:[7,6] q:[]

p:[7,6] q:[5]

p:[7,6,5] q:[]

p:[] q:[7,6,5]

return 6

11

A dumb (but correct)

implementation

struct List {int len; int *data};

struct List * new(void) {

struct List *p = (struct List *)malloc(sizeof(*p));

p->len=0;

p->data=NULL;

return p;

}

void insert (struct List *p, int key) {

int i;

int *a = (int *)malloc((p->len+1)*sizeof(int));

for (i=0; i<p->len; i++)

a[i+1]=p->data[i];

a[0]=key;

p->len += 1;

p->data = a;

}

void concat (struct List *p,

struct List *q) {

int i;

int *a = (int *)malloc((p->len+q->len)*sizeof(int));

for (i=0; i<p->len; i++)

a[i]=p->data[i];

for (i=0; i<q->len; i++)

a[p->len+i]=q->data[i];

p->len += q->len;

p->data = a;

q->len = 0;

q->data = NULL;

}

int nth_key (struct List *p, int n) {

if (0 <= n && n < p->len)

return p->data[n];

else return 7;

}

3
7
6
5

len

data

12

A smarter

implementation
struct Node {int key; struct Node *next;};

struct List {struct Node *first;};

struct List * new(void) {

struct List *p = (struct List *)malloc(sizeof(*p));

p->first=NULL;

return p;

}

void insert (struct List *p, int key) {

struct Node *n;

n = (struct Node *)malloc(sizeof *n);

assert (n!=NULL);

n->key=key; n->next=p->first; p->first=n;

}

void concat (struct List *p,

struct List *q) {

struct Node *t = p->first;

if (t==NULL) {

p->first = q->first;

} else {

while (t->next != NULL)

t = t->next;

t->next = q->first;

}

q->first = NULL;

}

int nth_key (struct List *p, int n) {

struct Node *t = p->first;

while (n>0 && t!=NULL) {n--; t=t->next;}

if (t==NULL) return 6;

else return t->key;

}

7 6 5
first

13

Representation vs. abstraction

7 6 5

3
7
6
5

p

p

p:[7,6,5]

p:[7,6,5]

int f(void) {

struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

p:[]

p:[] q:[]

p:[6] q:[]

p:[7,6] q:[]

p:[7,6] q:[5]

p:[7,6,5] q:[]

p:[] q:[7,6,5]

return 6

No matter which implementation

is used, the client program

works “the same.”

(Might be faster with

the smart implementation)

14

Underspecified behavior

7 6 53
7
6
5

p p

int nth_key (struct List *p, int n) {

if (0 <= n && n < p->len)

return p->data[n];

else return 7;

}

int nth_key (struct List *p, int n) {

struct Node *t = p->first;

while (n>0 && t!=NULL)

{n--; t=t->next;}

if (t==NULL) return 6;

else return t->key;

}

Operation nth_key(p,n), if p represents σ1∙i ∙σ2

where the length of σ1 is n, returns i ;
otherwise (if the length of the string represented by p
is ≤n), it returns an arbitrary integer.

This is OK! Client program is not supposed to rely on unspecified
behavior. If it does, then installing a different implementation might cause
the client to behave differently; in which case, too bad for the client.

15

ADT modules in C (wrong!)
list.h
struct List {int len; int *data};

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

#include "list.h"

int f(void) {
struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

client.c list_array.c

#include "list.h"

struct List * new(void) {

struct List *p = (struct List *)malloc(sizeof(*p));

p->len=0;

p->data=NULL;

return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... }

If you put the
representation here,

then it’s not an

abstract data type,
it’s just a data type.

(Many C programmers
program this way because

they don’t know any
better.)

16

ADT modules in C (right!)
list.h
struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

#include "list.h"

int f(void) {
struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

client.c list_array.c
#include "list.h"

struct List {int len; int *data};

struct List * new(void) {

struct List *p = (struct List *)malloc(sizeof(*p));

p->len=0;

p->data=NULL;

return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... }
17

ADT modules in C (alternate implementation)

list.h
struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

#include "list.h"

int f(void) {
struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

client.c list_linked.c
#include "list.h"

struct Node {int key; struct Node *next;};

struct List {struct Node *first;};

struct List * new(void) {

struct List *p = (struct List *)malloc(sizeof(*p));

p->first=NULL;

return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... }
18

What happens compiling client.c
list.h

struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

#include "list.h"

int f(void) {
struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

client.c

struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

int f(void) {
struct List *p, *q;

p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

}

Never does any of:

p->field

sizeof (struct List)

sizeof (*p)

19

enforcement

list.h

struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

Putting struct List; here, instead of struct List {fields...};

enforces the abstraction: it prevents client.c from accessing the fields of the struct.

[John Reynolds]

The moral of this fable is that:

Type structure is a syntactic discipline for enforcing levels of abstraction.

20

discipline

list.h

#include "list.h"

. . .

client.c list_linked.c
#include "list.h"

. . .

[John Reynolds]

The moral of this fable is that:

Type structure is a syntactic discipline for enforcing levels of abstraction.

Arranging your ADTs and their clients in .c files like this, with the interface in .h files,
is a discipline of programming, to enforce levels of abstraction,
that you should use in C programming.

21

Cheatin’ client
list.h

struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

#include "list.h"

struct List {int len; int *data};

int f(void) {
struct List *p, *q;

p = new();

if (p->len > 0)

return p->data[0];

else return 8;

}

client.c

A couple of slides ago, I wrote,
“Putting struct List; in list.h instead
of struct List {fields...};

enforces the abstraction: it prevents client.c
from accessing the fields of the struct.”

Well, the enforcer has its limits. A
boneheaded client can always find its way
around the enforcement. That leads to
brittle, buggy programs!

Doctor, it
hurts when I

do this

Then don’t
do that!

22

Finishing up the module interface

struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List *p,

struct List *q);

int nth_key (struct List *p, int n);

What’s missing?
Well, that depends on your top-down program design.
What does the client need? (Can’t tell; I haven’t shown you the client)

But probably you’ll want a way to free a List:

void free_list(struct list *p);

23

freeing a List

struct Node {int key; struct Node *next;};

struct List {struct Node *first;};

void free_list(struct list *p) {

struct node *u, *t = p->first;

free (p);

while (t!=NULL) {

u=t->next;

free(t);

t=u;

}

}

7 6 5

6 5

u

t
6 5

u

p

7 6 5

ut

24

25

Module Design Principles

We propose 7 module design principles

And illustrate them with 4 examples
• List, string, stdio, SymTable

Continued in next lecture . . .

25

