
1

Program and

Programming Style

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 1

Princeton University
Computer Science 217: Introduction to Programming Systems

For Your Amusement

“Any fool can write code that a computer can understand.

Good programmers write code that humans can

understand.” -- Martin Fowler

“Good code is its own best documentation. As you’re about

to add a comment, ask yourself, ‘How can I improve the

code so that this comment isn’t needed?’” -- Steve

McConnell

“Programs must be written for people to read, and only

incidentally for machines to execute.” -- Abelson /

Sussman

“Everything should be built top-down, except the first time.” -

- Alan Perlis

2

“Programming in the Large” Steps

Design & Implement
• Program & programming style <-- we are here

• Common data structures and algorithms

• Modularity

• Building techniques & tools (done)

Debug
• Debugging techniques & tools

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools

3

Goals of this Lecture

Help you learn about:
• Good program style

• Good programming style

Why?
• A well-styled program is more likely to be correct than a poorly-

styled program

• A well-styled program is more likely to stay correct (i.e. is more

maintainable) than a poorly-styled program

• A power programmer knows the qualities of a well-styled program,

and how to compose one quickly

4

Agenda

Program style
• Qualities of a good program

Programming style
• How to write a good program quickly

5

Motivation for Program Style

Who reads your code?
• The compiler

• Other programmers

6

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec

cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,

.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,

1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,

1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A

,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*

A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(

vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=

sph+5;while(s--sph)b=vdot(D,U=vcomb(-1.,P,s-cen)),u=b*b-vdot(U,U)+s-rad*s -

rad,u=u0?sqrt(u):1e31,u=b-u1e-7?b-u:b+u,tmin=u=1e-7&&u<tmin?best=s,u: tmin;return

best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; struct

sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return

amb;color=amb;eta=s-ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s-cen

)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l--sph)if((e=l -

kl*vdot(N,U=vunit(vcomb(-1.,P,l-cen))))0&&intersect(P,U)==l)color=vcomb(e ,l-

color,color);U=s-color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-

d*d);return vcomb(s-kt,e0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt

(e),N,black))):black,vcomb(s-ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s-kd,

color,vcomb(s-kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)

U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,

trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}

This is a working ray tracer! (courtesy of Paul Heckbert)

7

Motivation for Program Style

Why does program style matter?
• Correctness

• The clearer a program is, the more likely it is to be

correct

• Maintainability

• The clearer a program is, the more likely it is to stay

correct over time

Good program ≈ clear program

Choosing Names

Use descriptive names for globals and functions

• E.g., display, CONTROL, CAPACITY

Use concise names for local variables

• E.g., i (not arrayIndex) for loop variable

Use case judiciously

• E.g., Stack_push (Module_function)

CAPACITY (constant)

buf (local variable)

Use a consistent style for compound names

• E.g., frontsize, frontSize, front_size

Use active names for functions that do something

• E.g., getchar(), putchar(), Check_octal(), etc.

Not necessarily for functions that are something: sin(), sqrt() 8

9

Using C Idioms

Use C idioms
• Example: Set each array element to 1.0.

• Bad code (complex for no obvious gain)

• Good code (not because it’s vastly simpler—it isn’t!—but because it uses a

standard idiom that programmers can grasp at a glance)

• Don’t feel obliged to use C idioms that decrease clarity

i = 0;

while (i <= n-1)

array[i++] = 1.0;

for (i=0; i<n; i++)

array[i] = 1.0;

10

Revealing Structure: Expressions

Use natural form of expressions
• Example: Check if integer n satisfies j < n < k

• Bad code

• Good code

• Conditions should read as you’d say them aloud

• Not “Conditions shouldn’t read as you’d never say them in other

than a purely internal dialog!”

if (!(n >= k) && !(n <= j))

if ((j < n) && (n < k))

11

Revealing Structure: Expressions

Parenthesize to resolve ambiguity
• Example: Check if integer n satisfies j < n < k

• Common code

• Clearer code (maybe)

if ((j < n) && (n < k))

if (j < n && n < k)
Does this

code work?

It’s clearer depending on whether your audience can be

trusted to know the precedence of all the C operators.

Use your judgment on this!

12

Revealing Structure: Expressions

Parenthesize to resolve ambiguity (cont.)
• Example: read and print character until end-of-file

• Bad code

• Good-ish code

• (Code with side effects inside expressions is never truly “good”,

but at least this code is a standard idiomatic way to write it in C)

while (c = getchar() != EOF)

putchar(c);

while ((c = getchar()) != EOF)

putchar(c);

Does this

code work?

13

Revealing Structure: Expressions

Break up complex expressions
• Example: Identify chars corresponding to months of year

• Bad code

• Good code – lining up things helps

• Very common, though, to elide parentheses

if ((c == 'J') || (c == 'F') || (c ==

'M') || (c == 'A') || (c == 'S') || (c

== 'O') || (c == 'N') || (c == 'D'))

if ((c == 'J') || (c == 'F') ||

(c == 'M') || (c == 'A') ||

(c == 'S') || (c == 'O') ||

(c == 'N') || (c == 'D'))

if (c == 'J' || c == 'F' || c == 'M' ||

c == 'A' || c == 'S' || c == 'O' ||

c == 'N' || c == 'D')

14

Revealing Structure

Perhaps better in this case: a switch statement

if (c == 'J' || c == 'F' || c == 'M' ||

c == 'A' || c == 'S' || c == 'O' ||

c == 'N' || c == 'D')

do_this();

else do_that();

switch (c) {

case 'J': case 'F': case 'M':

case 'A': case 'S': case 'O':

case 'N': case 'D':

do_this();

break;

default:

do_that();

}

15

Revealing Structure: Spacing

Use readable/consistent spacing
• Example: Assign each array element a[j] to the value j.

• Bad code

• Good code

• Often can rely on auto-indenting feature in editor

for (j=0;j<100;j++) a[j]=j;

for (j = 0; j < 100; j++)

a[j] = j;

16

Revealing Structure: Indentation

Use readable/consistent/correct indentation
• Example: Checking for leap year (does Feb 29 exist?)

legal = TRUE;

if (month == FEB)

{ if ((year % 4) == 0)

if (day > 29)

legal = FALSE;

else

if (day > 28)

legal = FALSE;

}

legal = TRUE;

if (month == FEB)

{ if ((year % 4) == 0)

{ if (day > 29)

legal = FALSE;

}

else

{ if (day > 28)

legal = FALSE;

}

}
Does this

code work? Does this

code work?

17

Revealing Structure: Indentation

Use “else-if” for multi-way decision structures
• Example: Comparison step in a binary search.
• Bad code

• Good code

if (x < a[mid])

high = mid – 1;

else if (x > a[mid])

low = mid + 1;

else

return mid;

if (x < a[mid])

high = mid – 1;

else

if (x > a[mid])

low = mid + 1;

else

return mid;

2
4

5

7

8

10

17

low=0

high=6

mid=3

10

x

a

18

Revealing Structure: “Paragraphs”

Use blank lines to divide the code into key parts

#include <stdio.h>

#include <stdlib.h>

/* Read a circle's radius from stdin, and compute and write its

diameter and circumference to stdout. Return 0 if successful. */

int main(void)

{ const double PI = 3.14159;

int radius;

int diam;

double circum;

printf("Enter the circle's radius:\n");

if (scanf("%d", &radius) != 1)

{ fprintf(stderr, "Error: Not a number\n");

exit(EXIT_FAILURE); /* or: return EXIT_FAILURE; */

}

…

19

Revealing Structure: “Paragraphs”

Use blank lines to divide the code into key parts

diam = 2 * radius;

circum = PI * (double)diam;

printf("A circle with radius %d has diameter %d\n",

radius, diam);

printf("and circumference %f.\n", circum);

return 0;

}

Composing Comments

Master the language and its idioms
• Let the code speak for itself

• And then…

Compose comments that add new information
i++; /* Add one to i. */

Comment paragraphs of code, not lines of code
• E.g., “Sort array in ascending order”

Comment global data
• Global variables, structure type definitions, field definitions, etc.

Compose comments that agree with the code!!!
• And change as the code itself changes!!!

20

21

Composing Comments

Comment sections (“paragraphs”) of code, not lines of code

#include <stdio.h>

#include <stdlib.h>

/* Read a circle's radius from stdin, and compute and write its

diameter and circumference to stdout. Return 0 if successful. */

int main(void)

{ const double PI = 3.14159;

int radius;

int diam;

double circum;

/* Read the circle’s radius. */
printf("Enter the circle's radius:\n");

if (scanf("%d", &radius) != 1)

{ fprintf(stderr, "Error: Not a number\n");

exit(EXIT_FAILURE); /* or: return EXIT_FAILURE; */

}

…

22

Composing Comments

/* Compute the diameter and circumference. */

diam = 2 * radius;

circum = PI * (double)diam;

/* Print the results. */

printf("A circle with radius %d has diameter %d\n",

radius, diam);

printf("and circumference %f.\n", circum);

return 0;

}

Composing Function Comments

Describe what a caller needs to know to call the function

properly
• Describe what the function does, not how it works

• Code itself should clearly reveal how it works…

• If not, compose “paragraph” comments within definition

Describe input
• Parameters, files read, global variables used

Describe output
• Return value, parameters, files written, global variables affected

Refer to parameters by name

23

24

Composing Function Comments

Bad function comment

Describes how the function works

/* decomment.c */

/* Read a character. Based upon the character and

the current DFA state, call the appropriate

state-handling function. Repeat until

end-of-file. */

int main(void)

{

…

}

30% of the class last year

lost points on assignment 1

for a “how” instead of

“what” comment on

main()

25

Composing Function Comments

Good function comment

• Describes what the function does

/* decomment.c */

/* Read a C program from stdin. Write it to

stdout with each comment replaced by a single

space. Preserve line numbers. Return 0 if

successful, EXIT_FAILURE if not. */

int main(void)

{

…

}

26

Using Modularity

Abstraction is the key to managing complexity
• Abstraction is a tool (the only one???) that people use to understand

complex systems

• Abstraction allows people to know what a (sub)system does without

knowing how

Proper modularity is the manifestation of abstraction
• Proper modularity makes a program’s abstractions explicit

• Proper modularity can dramatically increase clarity

• ⇒ Programs should be modular

However
• Excessive modularity can decrease clarity!

• Improper modularity can dramatically decrease clarity!!!

• ⇒ Programming is an art

27

Modularity Examples

Examples of function-level modularity
• Character I/O functions such as getchar() and putchar()

• Mathematical functions such as sin() and gcd()

• Function to sort an array of integers

Examples of file-level modularity
• (See subsequent lectures)

Program Style Summary

Good program ≈ clear program

Qualities of a clear program
• Uses appropriate names

• Uses common idioms

• Reveals program structure

• Contains proper comments

• Is modular

28

Agenda

Program style
• Qualities of a good program

Programming style
• How to write a good program quickly

29

30

Bottom-Up Design

Bottom-up design
• Design one part of the system in detail

• Design another part of the system in detail

• Combine

• Repeat until finished

Bottom-up design in painting
• Paint part of painting in complete detail

• Paint another part of painting in complete detail

• Combine

• Repeat until finished

• Unlikely to produce a good painting

(except sometimes: see the movie “Tim’s Vermeer”)

1 2 …

31

Bottom-Up Design

Bottom-up design in programming
• Compose part of program in complete detail

• Compose another part of program in complete detail

• Combine

• Repeat until finished

• Unlikely to produce a good program

1
2
3
4

…

5

3 4

1 2 …5

32

Top-Down Design

Top-down design
• Design entire product with minimal detail

• Successively refine until finished

Top-down design in painting
• Sketch the entire painting with minimal detail

• Successively refine until finished

33

Top-Down Design

Top-down design in programming
• Define main() function in pseudocode with minimal detail

• Refine each pseudocode statement

• Small job ⇒ replace with real code

• Large job ⇒ replace with function call

• Repeat in (mostly) breadth-first order until finished

• Bonus: Product is naturally modular

1

2 3

4 5 …

34

Top-Down Design in Reality

Top-down design in programming in reality
• Define main() function in pseudocode

• Refine each pseudocode statement

• Oops! Details reveal design error, so…

• Backtrack to refine existing (pseudo)code, and proceed

• Repeat in (mostly) breadth-first order until finished

1

2 Oops

1’

2’ 3

1’

2’ 3

4 Oops

1’’

2’’ 3’

4’ 5 …

35

Example: Text Formatting

Functionality (derived from King Section 15.3)
• Input: ASCII text, with arbitrary spaces and newlines

• Output: the same text, left and right justified

• Fit as many words as possible on each 50-character line

• Add even spacing between words to right justify the text

• No need to right justify last line

• Assumptions

• “Word” is a sequence of non-white-space chars followed by a

white-space char or end-of-file

• No word is longer than 20 chars

36

"C is quirky, flawed, and an enormous success.

While accidents of history

surely helped,

it evidently satisfied a need for a

system implementation language efficient enough

to displace assembly language,

yet sufficiently abstract and fluent to describe

algorithms and interactions in a

wide variety of environments." -- Dennis Ritchie

"C is quirky, flawed, and an enormous success.

While accidents of history surely helped, it

evidently satisfied a need for a system

implementation language efficient enough to

displace assembly language, yet sufficiently

abstract and fluent to describe algorithms and

interactions in a wide variety of environments."

-- Dennis Ritchie

Example Input and Output
In

p
u
t

O
u
tp

u
t

37

Caveats

Caveats concerning the following presentation
• Function comments and some blank lines are omitted

• Because of space constraints

• Don’t do that!!!

• Design sequence is idealized

• In reality, typically much backtracking would occur

The main() Function

38

int main(void)

{ <clear line>

<read a word>

while (<there is a word>)

{ if (<word doesn’t fit on line>)
{ <write justified line>

<clear line>

}

<add word to line>

<read a word>

}

if (<line isn’t empty>)
<write line>

return 0;

}

The main() Function

39

enum {MAX_WORD_LEN = 20};

int main(void)

{ char word[MAX_WORD_LEN+1];

int wordLen;

<clear line>

wordLen = readWord(word);

while (<there is a word>)

{ if (<word doesn’t fit on line>)
{ <write justified line>

<clear line>

}

<add word to line>

wordLen = readWord(word);

}

if (<line isn’t empty>)
<write line>

return 0;

}

The main() Function

40

enum {MAX_WORD_LEN = 20};

int main(void)

{ char word[MAX_WORD_LEN+1];

int wordLen;

<clear line>

wordLen = readWord(word);

while (wordLen != 0)

{ if (<word doesn’t fit on line>)
{ <write justified line>

<clear line>

}

<add word to line>

wordLen = readWord(word);

}

if (<line isn’t empty>)
<write line>

return 0;

}

The main() Function

41

enum {MAX_WORD_LEN = 20};

int main(void)

{ char word[MAX_WORD_LEN+1];

int wordLen;

int lineLen;

<clear line>

wordLen = readWord(word);

while (wordLen != 0)

{ if (<word doesn’t fit on line>)
{ <write justified line>

<clear line>

}

<add word to line>

wordLen = readWord(word);

}

if (lineLen > 0)

<write line>

return 0;

}

The main() Function

42

enum {MAX_WORD_LEN = 20};

enum {MAX_LINE_LEN = 50};

int main(void)

{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];

int wordLen;

int lineLen;

<clear line>

wordLen = readWord(word);

while (wordLen != 0)

{ if (<word doesn’t fit on line>)
{ <write justified line>

<clear line>

}

lineLen = addWord(word, line, lineLen);

wordLen = readWord(word);

}

if (lineLen > 0)

<write line>

return 0;

}

The main() Function

43

enum {MAX_WORD_LEN = 20};

enum {MAX_LINE_LEN = 50};

int main(void)

{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];

int wordLen;

int lineLen;

<clear line>

wordLen = readWord(word);

while (wordLen != 0)

{ if (<word doesn’t fit on line>)
{ <write justified line>

<clear line>

}

lineLen = addWord(word, line, lineLen);

wordLen = readWord(word);

}

if (lineLen > 0)

puts(line);

return 0;

}

The main() Function

44

enum {MAX_WORD_LEN = 20};

enum {MAX_LINE_LEN = 50};

int main(void)

{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];

int wordLen;

int lineLen = 0;

int wordCount = 0;

<clear line>

wordLen = readWord(word);

while (wordLen != 0)

{ if (<word doesn’t fit on line>)
{ writeLine(line, lineLen, wordCount);

<clear line>

}

lineLen = addWord(word, line, lineLen);

wordLen = readWord(word);

}

if (lineLen > 0)

puts(line);

return 0;

}

The main() Function

45

enum {MAX_WORD_LEN = 20};

enum {MAX_LINE_LEN = 50};

int main(void)

{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];

int wordLen;

int lineLen = 0;

int wordCount = 0’

<clear line>

wordLen = readWord(word);

while (wordLen != 0)

{ if ((wordLen + 1 + lineLen) > MAX_LINE_LEN)

{ writeLine(line, lineLen, wordCount);

<clear line>

}

lineLen = addWord(word, line, lineLen);

wordLen = readWord(word);

}

if (lineLen > 0)

puts(line);

return 0;

}

The main() Function

46

enum {MAX_WORD_LEN = 20};

enum {MAX_LINE_LEN = 50};

int main(void)

{ char word[MAX_WORD_LEN+1];

char line[MAX_LINE_LEN+1];

int wordLen;

int lineLen = 0;

int wordCount = 0;

line[0] = '\0'; lineLen = 0; wordCount = 0;

wordLen = readWord(word);

while (wordLen != 0)

{ if ((wordLen + 1 + lineLen) > MAX_LINE_LEN)

{ writeLine(line, lineLen, wordCount);

line[0] = '\0'; lineLen = 0; wordCount = 0;

}

lineLen = addWord(word, line, lineLen);

wordLen = readWord(word);

}

if (lineLen > 0)

puts(line);

return 0;

}

Status

47

main

readWord writeLine addWord

The readWord() Function

48

int readWord(char *word)

{

<skip over white space>

<read chars, storing up to MAX_WORD_LEN in word>

<return length of word>

}

The readWord() Function

49

int readWord(char *word)

{

int ch;

/* Skip over white space. */

ch = getchar();

while ((ch != EOF) && isspace(ch))

ch = getchar();

<read up to MAX_WORD_LEN chars into word>

<return length of word>

}

Note the use of a function

from the standard library.

Very appropriate for your

top-down design to target

things that are already built.

The readWord() Function

50

int readWord(char *word)

{

int ch;

int pos = 0;

/* Skip over white space. */

ch = getchar();

while ((ch != EOF) && isspace(ch))

ch = getchar();

/* Read up to MAX_WORD_LEN chars into word. */

while ((ch != EOF) && (! isspace(ch)))

{ if (pos < MAX_WORD_LEN)

{ word[pos] = (char)ch;

pos++;

}

ch = getchar();

}

word[pos] = '\0';

<return length of word>

}

The readWord() Function

51

int readWord(char *word)

{

int ch;

int pos = 0;

ch = getchar();

/* Skip over white space. */

while ((ch != EOF) && isspace(ch))

ch = getchar();

/* Read up to MAX_WORD_LEN chars into word. */

while ((ch != EOF) && (! isspace(ch)))

{ if (pos < MAX_WORD_LEN)

{ word[pos] = (char)ch;

pos++;

}

ch = getchar();

}

word[pos] = '\0';

return pos;

}

readWord() gets away with murder

here, consuming/discarding one

character past the end of the word.

Status

52

main

readWord writeLine addWord

The addWord() Function

53

int addWord(const char *word, char *line, int lineLen)

{

<if line already contains words, then append a space>

<append word to line>

<return the new line length>

}

The addWord() Function

54

int addWord(const char *word, char *line, int lineLen)

{

int newLineLen = lineLen;

/* if line already contains words, then append a space. */

if (newLineLen > 0)

{ strcat(line, " ");

newLineLen++;

}

<append word to line>

<return the new line length>

}

The addWord() Function

55

int addWord(const char *word, char *line, int lineLen)

{

int newLineLen = lineLen;

/* if line already contains words, then append a space. */

if (newLineLen > 0)

{ strcat(line, " ");

newLineLen++;

}

strcat(line, word);

<return the new line length>

}

The addWord() Function

56

int addWord(const char *word, char *line, int lineLen)

{

int newLineLen = lineLen;

/* If line already contains some words, then append a space. */

if (newLineLen > 0)

{ strcat(line, " ");

newLineLen++;

}

strcat(line, word);

newLineLen += strlen(word);

return newLineLen;

}

Status

57

main

readWord writeLine addWord

The writeLine() Function

58

void writeLine(const char *line, int lineLen, int wordCount)

{ int i;

<compute number of excess spaces for line>

for (i = 0; i < lineLen; i++)

{ if (line[i] != ' ')

putchar(line[i])

else

{

<compute additional spaces to insert>

<print a space, plus additional spaces>

<decrease extra spaces and word count>
}

}
putchar('\n');

}

The writeLine() Function

59

void writeLine(const char *line, int lineLen, int wordCount)

{ int i, extraSpaces;

/* Compute number of excess spaces for line. */

extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)

{ if (line[i] != ' ')

putchar(line[i])

else

{

<compute additional spaces to insert>

<print a space, plus additional spaces>

<decrease extra spaces and word count>
}

}
putchar('\n');

}

The writeLine() Function

60

void writeLine(const char *line, int lineLen, int wordCount)

{ int i, extraSpaces, spacesToInsert;

/* Compute number of excess spaces for line. */

extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)

{ if (line[i] != ' ')

putchar(line[i])

else

{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

<print a space, plus additional spaces>

<decrease extra spaces and word count>
}

}
putchar('\n');

}

The number

of gaps

The writeLine() Function

61

void writeLine(const char *line, int lineLen, int wordCount)

{ int i, extraSpaces, spacesToInsert, j;

/* Compute number of excess spaces for line. */

extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)

{ if (line[i] != ' ')

putchar(line[i])

else

{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

/* Print a space, plus additional spaces. */

for (j = 1; j <= spacesToInsert + 1; j++)

putchar(' ');

<decrease extra spaces and word count>
}

}
putchar('\n');

}

Example:

If extraSpaces is 10

and wordCount is 5,

then gaps will contain

2, 2, 3, and 3 extra

spaces respectively

The writeLine() Function

62

void writeLine(const char *line, int lineLen, int wordCount)

{ int i, extraSpaces, spacesToInsert, j;

/* Compute number of excess spaces for line. */

extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)

{ if (line[i] != ' ')

putchar(line[i])

else

{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

/* Print a space, plus additional spaces. */

for (j = 1; j <= spacesToInsert + 1; j++)

putchar(' ');

/* Decrease extra spaces and word count. */

extraSpaces -= spacesToInsert;

wordCount--;

}
}
putchar('\n');

}

Status

63

main

readWord writeLine addWord

Complete!

64

Top-Down Design and Modularity

Note: Top-down design naturally yields modular code

Much more on modularity in upcoming lectures

Aside: Least-Risk Design

Design process should minimize risk

Bottom-up design
• Compose each child module

before its parent

• Risk level: high

• May compose modules

that are never used

Top-down design
• Compose each parent module

before its children

• Risk level: low

• Compose only those modules

that are required

65

5

3 4

2 1 …

1

2 3

4 5 …

Aside: Least-Risk Design

Least-risk design
• The module to be composed next is the one

that has the most risk

• The module to be composed next is the one

that, if problematic, will require redesign of

the greatest number of modules

• The module to be composed next is the one

that poses the least risk of needing to

redesign other modules

• The module to be composed next is the one

that poses the least risk to the system as a whole

• Risk level: minimal (by definition)

66

2

3 4

1 5 …

Aside: Least-Risk Design

Recommendation
• Work mostly top-down

• But give high priority to risky modules

• Create scaffolds and stubs as required

67

Summary

Program style
• Choose appropriate names (for variables, functions, …)

• Use common idioms (but not at the expense of clarity)

• Reveal program structure (spacing, indentation, parentheses, …)

• Compose proper comments (especially for functions)

• Use modularity (because modularity reveals abstractions)

Programming style
• Use top-down design and successive refinement

• But know that backtracking inevitably will occur

• And give high priority to risky modules

68

Are we there yet?

Now that the top-down design is done, and the program

“works,” does that mean we’re done?

No. There are almost always things to improve, perhaps by

a bottom-up pass that better uses existing libraries.

The second time you write the same program, it turns out

better.

70

"C is quirky, flawed, and an enormous success.

While accidents of history

surely helped,

it evidently satisfied a need for a

system implementation language efficient enough

to displace assembly language,

yet sufficiently abstract and fluent to describe

algorithms and interactions in a

wide variety of environments." -- Dennis Ritchie

"C is quirky, flawed, and an enormous success.

While accidents of history surely helped, it

evidently satisfied a need for a system

implementation language efficient enough to

displace assembly language, yet sufficiently

abstract and fluent to describe algorithms and

interactions in a wide variety of environments."

-- Dennis Ritchie

What’s wrong with this output?
In

p
u
t

O
u
tp

u
t

71

"C is quirky, flawed, and an enormous success.

While accidents of history surely helped, it

evidently satisfied a need for a system

implementation language efficient enough to

displace assembly language, yet sufficiently

abstract and fluent to describe algorithms and

interactions in a wide variety of environments."

-- Dennis Ritchie

What’s better with this output?
B

e
tt

e
r

"C is quirky, flawed, and an enormous success.

While accidents of history surely helped, it

evidently satisfied a need for a system

implementation language efficient enough to

displace assembly language, yet sufficiently

abstract and fluent to describe algorithms and

interactions in a wide variety of environments."

-- Dennis Ritchie

A
d
e
q
u
a
te

Challenge problem

Design a function int spacesHere(int i, int k, int n)

that calculates how many marbles to put into the ith jar, assuming that there are n marbles to

distribute over k jars.

(1) the jars should add up to n, that is,

{s=0; for(i=0;i<k;i++) s+=spacesHere(i,k,n); assert (s==n);}

or in math notation, ∑i=0 spacesHere(i,k,n) = n

(2) marbles should be distributed evenly—the "extra" marbles should not bunch up in nearby jars.

HINT: You should be able to write this in one or two lines, without any loops.

My solution used floating-point division and rounding; do "man round" and pay attention to where

that man page says "include <math.h>".

k-1

73

Appendix: The “justify” Program

#include <stdio.h>

#include <ctype.h>

#include <string.h>

enum {MAX_WORD_LEN = 20};

enum {MAX_LINE_LEN = 50};

Continued on next slide

74

Appendix: The “justify” Program

/* Read a word from stdin. Assign it to word. Return the length

of the word, or 0 if no word could be read. */

int readWord(char *word)

{ int ch, pos = 0;

/* Skip over white space. */

ch = getchar();

while ((ch != EOF) && isspace(ch))

ch = getchar();

/* Store chars up to MAX_WORD_LEN in word. */

while ((ch != EOF) && (! isspace(ch)))

{ if (pos < MAX_WORD_LEN)

{ word[pos] = (char)ch;

pos++;

}

ch = getchar();

}

word[pos] = '\0';

/* Return length of word. */

return pos;

}

Continued on next slide

75

Appendix: The “justify” Program

/* Append word to line, making sure that the words within line are

separated with spaces. lineLen is the current line length.

Return the new line length. */

int addWord(const char *word, char *line, int lineLen)

{

int newLineLen = lineLen;

/* If line already contains some words, then append a space. */

if (newLineLen > 0)

{ strcat(line, " ");

newLineLen++;

}

strcat(line, word);

newLineLen += strlen(word);

return newLineLen;

}

Continued on next slide

76

Appendix: The “justify” Program
/* Write line to stdout, in right justified form. lineLen

indicates the number of characters in line. wordCount indicates

the number of words in line. */

void writeLine(const char *line, int lineLen, int wordCount)

{ int extraSpaces, spacesToInsert, i, j;

/* Compute number of excess spaces for line. */

extraSpaces = MAX_LINE_LEN - lineLen;

for (i = 0; i < lineLen; i++)

{ if (line[i] != ' ')

putchar(line[i]);

else

{ /* Compute additional spaces to insert. */

spacesToInsert = extraSpaces / (wordCount - 1);

/* Print a space, plus additional spaces. */

for (j = 1; j <= spacesToInsert + 1; j++)

putchar(' ');

/* Decrease extra spaces and word count. */

extraSpaces -= spacesToInsert;

wordCount--;

}

}

putchar('\n');

}

C
o
n

ti
n

u
e
d
 o

n
 n

e
x
t

s
lid

e

77

Appendix: The “justify” Program

/* Read words from stdin, and write the words in justified format

to stdout. Return 0. */

int main(void)

{

/* Simplifying assumptions:

Each word ends with a space, tab, newline, or end-of-file.

No word is longer than MAX_WORD_LEN characters. */

char word[MAX_WORD_LEN + 1];

char line[MAX_LINE_LEN + 1];

int wordLen;

int lineLen = 0;

int wordCount = 0;

line[0] = '\0'; lineLen = 0; wordCount = 0;

…

Continued on next slide

78

Appendix: The “justify” Program

…

wordLen = readWord(word);

while ((wordLen != 0)

{

/* If word doesn't fit on this line, then write this line. */

if ((wordLen + 1 + lineLen) > MAX_LINE_LEN)

{ writeLine(line, lineLen, wordCount);

line[0] = '\0'; lineLen = 0; wordCount = 0;

}

lineLen = addWord(word, line, lineLen);

wordCount++;

wordLen = readWord(word);

}

if (lineLen > 0)

puts(line);

return 0;

}

79

Debugging (Part 1)

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 5

Princeton University
Computer Science 217: Introduction to Programming Systems

For Your Amusement

“When debugging, novices insert corrective code; experts

remove defective code.”

-- Richard Pattis

“If debugging is the act of removing errors from code, what's

programming?”

-- Tom Gilb

“Debugging is twice as hard as writing the code in the first

place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to debug

it.”

-- Brian Kernighan

80

For Your Amusement

81

The first computer bug

(found in the Harvard Mark II computer)

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms

• Modularity

• Building techniques & tools (done)

Test
• Testing techniques (done)

Debug
• Debugging techniques & tools <-- we are here

Maintain
• Performance improvement techniques & tools

82

83

Goals of this Lecture

Help you learn about:
• Strategies and tools for debugging your code

Why?
• Debugging large programs can be difficult

• A power programmer knows a wide variety of debugging strategies

• A power programmer knows about tools that facilitate debugging

• Debuggers

• Version control systems

84

Testing vs. Debugging

Testing
• What should I do to try to break my program?

Debugging
• What should I do to try to fix my program?

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

85

86

Understand Error Messages

Debugging at build-time is easier than debugging at run-

time, if and only if you…

Understand the error messages!

#include <stdioo.h>

/* Print "hello, world" to stdout and

return 0.

int main(void)

{ printf("hello, world\n");

return 0;

}

What are the

errors? (No

fair looking at

the next slide!)

87

Understand Error Messages

#include <stdioo.h>

/* Print "hello, world" to stdout and

return 0.

int main(void)

{ printf("hello, world\n");

return 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error(s)?

$ gcc217 hello.c -o hello

hello.c:1:20: error: stdioo.h: No such file or

directory

hello.c:2:1: error: unterminated comment

hello.c:7: warning: ISO C forbids an empty

translation unit

88

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ printf("hello, world\n")

return 0;

}

What are the

errors? (No

fair looking at

the next slide!)

89

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ printf("hello, world\n")

return 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error?

$ gcc217 hello.c -o hello

hello.c: In function 'main':

hello.c:6: error: expected ';' before 'return'

90

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ prinf("hello, world\n");

return 0;

}

What are the

errors? (No

fair looking at

the next slide!)

91

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and

return 0. */

int main(void)

{ prinf("hello, world\n")

return 0;

}

$ gcc217 hello.c -o hello

hello.c: In function 'main':

hello.c:5: warning: implicit declaration of function

'prinf'

/tmp/ccLSPMTR.o: In function `main':

hello.c:(.text+0x1a): undefined reference to `prinf'

collect2: ld returned 1 exit status

Which tool

(preprocessor,

compiler, or

linker) reports

the error?

92

Understand Error Messages

#include <stdio.h>

#include <stdlib.h>

enum StateType

{ STATE_REGULAR,

STATE_INWORD

}

int main(void)

{ printf("just hanging around\n");

return EXIT_SUCCESS;

}

What are the

errors? (No

fair looking at

the next slide!)

93

Understand Error Messages

#include <stdio.h>

#include <stdlib.h>

enum StateType

{ STATE_REGULAR,

STATE_INWORD

}

int main(void)

{ printf("just hanging around\n");

return EXIT_SUCCESS;

}

$ gcc217 hello.c -o hello

hello.c:7: error: two or more data types in declaration specifiers

hello.c:7: warning: return type of 'main' is not 'int'

What does

this error

message even

mean?

94

Understand Error Messages

Caveats concerning error messages
• Line # in error message may be approximate

• Error message may seem nonsensical

• Compiler may not report the real error

Tips for eliminating error messages
• Clarity facilitates debugging

• Make sure code is indented properly

• Look for missing semicolons

• At ends of structure type definitions

• At ends of function declarations

• Work incrementally

• Start at first error message

• Fix, rebuild, repeat

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

95

96

Think Before Writing

Inappropriate changes could make matters worse, so…

Think before changing your code
• Explain the code to:

• Yourself

• Someone else

• A Teddy bear?

• Do experiments

• But make sure they’re disciplined

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

97

98

Look for Common Bugs

Some of our favorites:

int i;

…

scanf("%d", i);

char c;

…

c = getchar();

switch (i)

{ case 0:

…

break;

case 1:

…

case 2:

…

}

if (i = 5)

…

if (5 < i < 10)

…

if (i & j)

…

while (c = getchar() != EOF)

…

What are

the

errors?

99

Look for Common Bugs

Some of our favorites:

for (i = 0; i < 10; i++)

{ for (j = 0; j < 10; i++)

{ ...

}

}

What are

the

errors?
for (i = 0; i < 10; i++)

{ for (j = 10; j >= 0; j++)

{ ...

}

}

100

Look for Common Bugs

Some of our favorites:

{ int i;

…

i = 5;

if (something)

{ int i;

…

i = 6;

…

}

…

printf("%d\n", i);

…

}

What value is

written if this

statement is

present? Absent?

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

101

102

Divide and Conquer

Divide and conquer: To debug a program…

• Incrementally find smallest input file that illustrates the bug

• Approach 1: Remove input

• Start with file

• Incrementally remove lines

until bug disappears

• Examine most-recently-removed lines

• Approach 2: Add input

• Start with small subset of file

• Incrementally add lines

until bug appears

• Examine most-recently-added lines

103

Divide and Conquer

Divide and conquer: To debug a module…

• Incrementally find smallest client code subset that illustrates the

bug

• Approach 1: Remove code

• Start with test client

• Incrementally remove lines of code until bug disappears

• Examine most-recently-removed lines

• Approach 2: Add code

• Start with minimal client

• Incrementally add lines of test client until bug appears

• Examine most-recently-added lines

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

104

105

Add More Internal Tests

(5) Add more internal tests

• Internal tests help find bugs (see “Testing” lecture)

• Internal test also can help eliminate bugs

• Validating parameters & checking invariants

can eliminate some functions from the bug hunt

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

106

107

Display Output

Write values of important variables at critical spots

• Poor:

• Maybe better:

• Better:

printf("%d", keyvariable);

stdout is buffered;

program may crash

before output appears

printf("%d", keyvariable);

fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush

stdout buffer

explicitly

Printing '\n' flushes

the stdout buffer, but

not if stdout is

redirected to a file

108

Display Output

• Maybe even better:

• Maybe better still:

fprintf(stderr, "%d", keyvariable);

FILE *fp = fopen("logfile", "w");

…

fprintf(fp, "%d", keyvariable);

fflush(fp);

Write debugging
output to stderr;

debugging output

can be separated

from normal output

via redirection

Write to a log file

Bonus: stderr is

unbuffered

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

109

110

Use a Debugger

Use a debugger

• Alternative to displaying output

111

The GDB Debugger

GNU Debugger
• Part of the GNU development environment

• Integrated with Emacs editor

• Allows user to:

• Run program

• Set breakpoints

• Step through code one line at a time

• Examine values of variables during run

• Etc.

For details see precept tutorial, precept reference sheet,

Appendix 1

Agenda

(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

112

113

Focus on Recent Changes

Focus on recent changes

• Corollary: Debug now, not later

Easier:

(1) Compose a little

(2) Test a little

(3) Debug a little

(4) Compose a little

(5) Test a little

(6) Debug a little

…

Difficult:

(1) Compose entire program

(2) Test entire program

(3) Debug entire program

114

Focus on Recent Changes

Focus on recent change (cont.)

• Corollary: Maintain old versions

Difficult:

(1) Change code

(2) Note new bug

(3) Try to remember what

changed since last

version

Easier:

(1) Backup current version

(2) Change code

(3) Note new bug

(4) Compare code with

last version to

determine what changed

115

Maintaining Old Versions

To maintain old versions…

Approach 1: Manually copy project directory

…

$ mkdir myproject

$ cd myproject

Create project files here.

$ cd ..

$ cp –r myproject myprojectDateTime

$ cd myproject

Continue creating project files here.

…

116

Maintaining Old Versions

Approach 2: Use a Revision Control System such as

subversion or git
• Allows programmer to:

• Check-in source code files from working copy to repository

• Commit revisions from working copy to repository

• saves all old versions

• Update source code files from repository to working copy

• Can retrieve old versions

• Appropriate for one-developer projects

• Extremely useful, almost necessary for multideveloper projects!

Not required for COS 217, but good to know!

Google “subversion svn” or “git” for more information.

Summary

General debugging strategies and tools:
(1) Understand error messages

(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

• Use GDB!!!

(8) Focus on recent changes

• Consider using RCS, etc.

117

118

Appendix 1: Using GDB

An example program

File testintmath.c:

#include <stdio.h>

int gcd(int i, int j)

{ int temp;

while (j != 0)

{ temp = i % j;

i = j;

j = temp;

}

return i;

}

int lcm(int i, int j)

{ return (i / gcd(i, j)) * j;

}

…

The program is correct

But let’s pretend it has a

runtime error in gcd()…

…

int main(void)

{ int iGcd;

int iLcm;

iGcd = gcd(8, 12);

iLcm = lcm(8, 12);

printf("%d %d\n", iGcd, iLcm);

return 0;

}

Euclid’s algorithm;

Don’t be concerned

with details

119

Appendix 1: Using GDB

General GDB strategy:

• Execute the program to the point of interest

• Use breakpoints and stepping to do that

• Examine the values of variables at that point

120

Appendix 1: Using GDB

Typical steps for using GDB:

(a) Build with –g
gcc217 –g testintmath.c –o testintmath

• Adds extra information to executable file that GDB uses

(b) Run Emacs, with no arguments
emacs

(c) Run GDB on executable file from within Emacs

<Esc key> x gdb <Enter key> testintmath <Enter key>

(d) Set breakpoints, as desired

break main

• GDB sets a breakpoint at the first executable line of main()

break gcd

• GDB sets a breakpoint at the first executable line of gcd()

121

Appendix 1: Using GDB

Typical steps for using GDB (cont.):
(e) Run the program

run

• GDB stops at the breakpoint in main()

• Emacs opens window showing source code

• Emacs highlights line that is to be executed next

continue

• GDB stops at the breakpoint in gcd()

• Emacs highlights line that is to be executed next

(f) Step through the program, as desired
step (repeatedly)

• GDB executes the next line (repeatedly)

• Note: When next line is a call of one of your functions:
• step command steps into the function

• next command steps over the function, that is, executes the next line
without stepping into the function

122

Appendix 1: Using GDB

Typical steps for using GDB (cont.):

(g) Examine variables, as desired
print i

print j

print temp

• GDB prints the value of each variable

(h) Examine the function call stack, if desired
where

• GBB prints the function call stack

• Useful for diagnosing crash in large program

(i) Exit gdb
quit

(j) Exit Emacs
<Ctrl-x key> <Ctrl-c key>

123

Appendix 1: Using GDB

GDB can do much more:
• Handle command-line arguments

run arg1 arg2

• Handle redirection of stdin, stdout, stderr
run < somefile > someotherfile

• Print values of expressions

• Break conditionally

• Etc.

