
1

Testing

Princeton University
Computer Science 217: Introduction to Programming Systems

Fall 2017

Software engineering method 1
1. Write program

2. Upload program to customer

3. . . . program has bugs, useless ...

Software engineering method 2
1. Be vewy, vewy careful

in writing program

2. Upload program to customer

(This is not really an engineering method, of course)

Software engineering method 3
do {

write_program;

OK = test_program ();

} while (!OK);

upload program to customer;

(This isn’t really much of an engineering method, either.)

Goals of this Lecture

Help you learn about:
• External testing
• Unit testing
• Internal testing
• Test coverage

Why?
• It’s hard to know if a (large) program works properly

• Software engineers spend at least as much time building test
code as writing the program

• You want to spend that time efficiently!

5

EXTERNAL TESTING

Example: “upper1” program

7

/* Read text from stdin. Convert the first character of each
"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

int main(void)
{

. . .
}

How do we test this program?
Run it on some sample inputs?

$./upper1
heLLo there...
^D
HeLLo There...
$

Ok if you only had to do
it once; tedious to repeat
every time you make a
change to the program.

Organizing your tests

8

/* Read text from stdin. Convert the first character of each
"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

$ cat inputs/001
heLLo there...
$ cat correct/001
HeLLo There...
$ cat inputs/002
84weird e. xample
$ cat correct/002
84Weird E. Xample

Running your tests

9

/* Read text from stdin. Convert the first character of each
"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

$ cat run-tests
./upper1 <inputs/001 >outputs/001
cmp outputs/001 correct/001
./upper1 <inputs/002 >outputs/002
cmp outputs/002 correct/002
$ sh run-tests
outputs/002 correct/002 differ: byte 5, line 1

this is a
“shell script”
or “bash script”

This barely qualifies as “engineering”
Limitations of whole-program testing:

• Works on noninteractive one-right-answer programs

• Requires knowing what the right answer is at the whole-
program input-output level
• If you already knew the right answer, you wouldn’t need a program!

• Can only test “surface” behavior, can’t examine internals

• Can never be sure when you have “enough” tests

• When you change the specification of the program, all
your tests are obsolete

Shell scripting

11

/* Read text from stdin. Convert the first character of each
"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

$ cat run-tests
for A in inputs/* ; do
./upper1 <inputs/$A >outputs/$A
cmp outputs/$A correct/$A

done
$ sh run-tests
outputs/002 correct/002 differ: byte 5, line 1

this is a
“shell script”
or “bash script”

You can also write these scripts in python instead of bash.
If you know some python already, this is probably a better
idea than learning bash.

Regression testing

12

re·gres·sion
rәˈɡreSH(ә)n/
noun
1. a return to a former or less developed state.
2. . . .

for (;;) {
test program; discover bug;
fix bug, in the process break something else;

}

re·gres·sion test·ing
Rerun your entire test suite after each change to the program.
When new bugs are found, add tests to the test suite that
check for those kinds of bugs.

Regression testing tools

Q: Are we allowed to use regression testing tools in the homeworks?
A: Yes, but if you do,
• You’re on your own, don’t ask the preceptors or Lab TAs for help with the tool
• Describe in your README how you used the tool.

UNIT TESTING

Testing modular programs
Any program (that’s not a toy) is broken up into modules, or

units.

Example:

Homework 2.

Homework 2
str.h (excerpt)
/* Return the length of src */
size_t Str_getLength(const char *src);
/* Copy src to dest. Return dest.*/
char *Str_copy(char *dest, const char *src);
/* Concatenate src to the end of dest. Return dest. */
char *Str_concat(char *dest, const char *src);

stra.c (excerpt)
#include "str.h"
size_t Str_getLength(const char *src){

... you write this code ...
}
char *Str_copy(char *dest, const char *src) {

... you write this code ...
}
char *Str_concat(char *dest, const char *src) {

... you write this code ...
}

replace.c (excerpt)
#include "str.h"
/* Write line to stdout with each occurrence

of from replaced with to. */
size_t replaceAndWrite(

char *line, char *from, char *to) {
... you write this code ...
calls Str_getLength, Str_copy,

Str_concat, etc.
}
int main(int argc, char **argv) {...}

Whole-program testing

$ a.out ain eign
The rain in Spain is mainly in the plain.
^D
The reign in Speign is meignly in the pleign.

Problem: If all you’re allowed to do is provide inputs to
main(), it’s hard to design tests that exercise every
behavior of the individual functions in stra.c.

str.h

stra.c replace.c

Unit testing
Put stra.c in a test harness.

str.h

stra.c teststr.c

teststr.c
/* Test the Str_getLength() function. */

static void testGetLength(void) {
size_t result;
printf(" Boundary Tests\n");
{ char src[] = {'\0', 's'};

result1 = Str_getLength(acSrc);
ASSURE(result == 0);

}
printf(" Statement Tests\n");
{ char src[] = {'R', 'u', 't', 'h', '\0', '\0'};

result1 = Str_getLength(src);
ASSURE(result == 4);

}
{ char src[] = {'R', 'u', 't', 'h', '\0', 's'};

result1 = Str_getLength(src);
ASSURE(result == 4);

}
{ char src[] = {'G', 'e', 'h', 'r', 'i', 'g', '\0', 's'};

result1 = Str_getLength(src);
ASSURE(result == 6);

}}

20

Stress Testing

Should stress the program with respect to:
• Quantity of data

• Large data sets
• Variety of data

• Textual data sets containing non-ASCII chars
• Binary data sets
• Randomly generated data sets

Should use computer to generate input sets
• Avoids human biases

Is this cheating?
Maybe, maybe not.

Stress testing

enum {STRESS_TEST_COUNT = 10};
enum {STRESS_STRING_SIZE = 10000};

static void testGetLength(void) {

. . .

printf(" Stress Tests\n");
{int i;
char src[STRESS_STRING_SIZE];
for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(src, STRESS_STRING_SIZE);
result1 = Str_getLength(acSrc);
ASSURE(result1 == strlen(acSrc));

}
}
}

When you don’t have a reference
implementation to give you “the answer”

printf(" Stress Tests\n");
{int i,j;
char src[STRESS_STRING_SIZE];
for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(src, STRESS_STRING_SIZE);
result1 = Str_getLength(acSrc);

ASSURE (0 <= result1);
ASSURE (result1 < STRESS_STRING_SIZE);
for (j=0; j<result1; j++)

ASSURE (src[j]!=0);
ASSURE (src[result1]==0);

}
}
}

Think of as many properties as you can
that the right answer must satisfy.

You can . . .

. . . combine unit testing and regression testing!

. . . write your unit tests (teststr.c) before you write your client
code (replace.c)

. . . write your unit tests (teststr.c) before you begin writing
the code that they will test (stra.c)

. . . use your unit-test design as a way to refine your interface
specifications (i.e., what’s described in comments in the
header file) another reason to write the unit tests before writing the code!

. . . avoid relying on the COS 217 instructors to provide you
all the unit tests in advance. (We have more unit tests in our grading
system than we give you in the homework assignments. It’s your job to test your
own code!)

Unit testing tools

Q: Are we allowed to use
unit testing tools in the
homeworks?

A: Yes, but if you do,
• You’re on your own,
don’t ask the preceptors
or Lab TAs for help with
the tool

• Describe in your
README how you used
the tool.

ASSERTIONS
Internal testing

26

The assert Macro

assert(int expr)
• If expr evaluates to TRUE (non-zero):

• Do nothing
• If expr evaluates to FALSE (zero):

• Print message to stderr “assert at line x failed”
• Exit the process

Useful for internal testing

27

The assert Macro
Disabling asserts

• To disable asserts, define NDEBUG…
• In code:

• Or when building:

/*------------------------------------*/
/* myprogram.c */
/*------------------------------------*/
#include <assert.h>

#define NDEBUG
…
/* Asserts are disabled here. */
…

$ gcc217 –D NDEBUG myprogram.c –o myprogram

28

Validating Parameters
(1) Validate parameters

• At leading edge of each function, make sure values of parameters
are valid

int f(int i, double d)
{

assert(i has a reasonable value);
assert(d has a reasonable value);
…

}

29

Validating Parameters
• Example

/* Return the greatest common
divisor of positive integers
i and j. */

int gcd(int i, int j)
{

assert(i > 0);
assert(j > 0);
…

}

30

Checking Invariants
(2) Check invariants

• At function entry, check aspects of data structures that should not
vary; maybe at function exit too

int isValid(MyType object)
{ …

/* Code to check invariants goes here.
Return 1 (TRUE) if object passes
all tests, and 0 (FALSE) otherwise. */

…
}

void myFunction(MyType object)
{ assert(isValid(object));

…
/* Code to manipulate object goes here. */
…
assert(isValid(object));

}

31

Checking Invariants

• Example
• “Balanced binary search tree insertion” function
• At leading edge:

• Are nodes sorted?
• Is tree balanced?

• At trailing edge:
• Are nodes still sorted?
• Is tree still balanced?

32

Checking Return Values
(3) Check function return values

• Check values returned by called functions

someRetValue = f(someArgs);
if (someRetValue == badValue)

/* Handle the error */
…

f(someArgs);
… Bad code (sometimes)

Good code

if (f(someArgs) == badValue)
/* Handle the error */

…

Good code

33

Checking Return Values

• Example:
• scanf() returns number of values read
• Caller should check return value

int i, j;
…
if (scanf("%d%d", &i, &j) != 2)

/* Handle the error */

int i, j;
…
scanf("%d%d", &i, &j);

Bad code

Good code

34

Checking Return Values

• Example:
• printf() returns number of chars (not values) written
• Can fail if writing to file and disk quota is exceeded
• Caller should check return value???

int i = 1000;
…
if (printf("%d", i) != 4)

/* Handle the error */

int i = 1000;
…
printf("%d", i);

Is this too
much?

Bad code???

Good code???

35

Checking array subscripts
Out-of-bounds array subscript is the cause of vast numbers

of security vulnerabilities in C programs!
#include <stdio.h>
#include <assert.h>

#define N 1000
#define M 1000000
int a[N];

int main(void) {
int i,j, sum=0;
for (j=0; j<M; j++)

for (i=0; i<N; i++) {
assert (0 <= i && i < N);
sum += a[i];

}
printf ("%d\n", sum);

}

36

Checking array subscripts
Doesn’t that slow it down?

How much slower is this
program with the assertion?

$ gcc –O2 test.c; time a.out

0.385 seconds ± .02

$ gcc –O2 –D NDEBUG test.c;
time a.out

0.385 seconds ± .02

Why?

#include <stdio.h>
#include <assert.h>

#define N 1000
#define M 1000000
int a[N];

int main(void) {
int i,j, sum=0;
for (j=0; j<M; j++)

for (i=0; i<N; i++) {
assert (0 <= i && i < N);
sum += a[i];

}
printf ("%d\n", sum);

}

37

Leave Testing Code Intact!
Examples of testing code:

• unit test harnesses (entire module, teststr.c)
• assert statements
• entire functions that exist only to support asserts

(isValid() function)

Do not remove testing code when program is finished
• In the “real world” no program ever is “finished”

If testing code is inefficient:
• Embed in calls of assert(), or
• Use #ifdef…#endif preprocessor directives

• See Appendix

TEST COVERAGE

39

Statement Testing

(1) Statement testing

• “Testing to satisfy the criterion that each statement in a program be
executed at least once during program testing.”

From the Glossary of Computerized System and Software Development Terminology

40

Statement Testing Example
Example pseudocode:

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Statement testing:

Should make sure both if
statements and all 4 nested
statements are executed

How many passes
through code are
required?

How can you measure code coverage?
Use a tool!

Q: Are we allowed to use
code coverage tools in the
homeworks?

A: Yes, but if you do,
• You’re on your own,
don’t ask the preceptors
or Lab TAs for help with
the tool

• Describe in your
README how you used
the tool.

42

Path Testing

(2) Path testing

• “Testing to satisfy coverage criteria that each logical path through
the program be tested. Often paths through the program are
grouped into a finite set of classes. One path from each class is then
tested.”

From the Glossary of Computerized System and Software Development Terminology

43

Path Testing Example
Example pseudocode:

• Simple programs ⇒ maybe reasonable
• Complex program ⇒ combinatorial explosion!!!

• Path test code fragments

Some code coverage tools can also assess path coverage.

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Path testing:

Should make sure all logical
paths are executed

How many passes
through code are
required?

44

Boundary Testing

(3) Boundary testing (alias corner case testing)

• “A testing technique using input values at, just below, and just
above, the defined limits of an input domain; and with input values
causing outputs to be at, just below, and just above, the defined
limits of an output domain.”

From the Glossary of Computerized System and Software Development Terminology

Test coverage in the data domain

45

Boundary Testing Example
How would you boundary-test this function?

/* Where a[] is an array of length n,
return the index i such that a[i]=x,
or -1 if not found */

int find(int a[], int n, int x);

46

Boundary Testing Example
How would you boundary-test this function?

/* Where a[] is an array of length n,
return the index i such that a[i]=x,
or -1 if not found */

int find(int a[], int n, int x);

int a[10];
for (i=0;i<10;i++) a[i]=1000+i;
assert (find(a,10,1009)==9);
assert (find(a,10,1000)==0);
assert (find(a+1,8,1000)== -1);
assert (find(a,9,1009)== -1);

47

Stress Testing

(4) Stress testing

• “Testing conducted to evaluate a system or component at or beyond
the limits of its specified requirements”

From the Glossary of Computerized System and Software Development Terminology

Test coverage in the data domain

48

Stress Testing Example 1
Specification:

• Print number of characters in stdin

Attempt:

#include <stdio.h>
int main(void)
{ char charCount = 0;

while (getchar() != EOF)
charCount++;

printf("%d\n", charCount);
return 0;

}

Does it work?

49

Stress Testing Example 2
Specification:

• Read a line from stdin
• Store as string (without '\n') in array of length ARRAY_LENGTH

Attempt:

int i;
char s[ARRAY_LENGTH];
for (i = 0; i < ARRAY_LENGTH-1; i++)
{ s[i] = getchar();

if ((s[i] == EOF) || (s[i] == '\n')) break;
}
s[i] = '\0';

Does it work?

50

Changing Code Temporarily

(4) Change code temporarily
• Temporarily change code to generate artificial boundary or stress

tests

• Example: Array-based sorting program
• Temporarily make array very small
• Does the program handle overflow?

51

Bug-Driven Testing

(5) Let debugging drive testing

• Reactive mode…
• Find a bug ⇒ create a test case that catches it

• Proactive mode…
• Do fault injection

• Intentionally (temporarily!) inject a bug
• Make sure testing mechanism catches it
• Test the testing!!!

52

Who Does the Testing?
Programmers

• White-box testing
• Pro: Know the code ⇒ can test all statements/paths/boundaries
• Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers
• Black-box testing
• Pro: Do not know the code ⇒ unbiased by code design
• Con: Do not know the code ⇒ unlikely to test all

statements/paths/boundaries

Customers
• Field testing
• Pros: Use code in unexpected ways; “debug” specs
• Cons: Often don’t like “participating”; difficult to generate enough

cases

53

Summary
Test coverage

• Statement coverage (measure with tools)
• Path coverage (measure with tools)
• Boundary testing
• Stress testing
• Regression testing

External testing (manage with tools)

Unit testing (manage with tools)

Internal testing
• Validate parameters
• Check invariants
• Check function return values
• Change code temporarily
• Leave testing code intact

Test the code—and the tests!

54

Appendix: #ifdef
Using #ifdef…#endif

• To enable testing code:

• To disable testing code:

…
#ifdef TEST_FEATURE_X
/* Code to test feature

X goes here. */
#endif
…

$ gcc217 –D TEST_FEATURE_X myprog.c –o myprog

myprog.c

$ gcc217 myprog.c –o myprog

