
1

The C Programming Language

Part 2

Princeton University
Computer Science 217: Introduction to Programming Systems Agenda

Data Types

Operators

Statements

I/O Facilities

2

3

Operators

Computers represent integers as bits

Arithmetic operations: +, -, *, /, etc.

Bit operations: and, or, xor, shift, etc.

Typical language design (1970s): provide abstraction
so that one does not confuse integers with their
representation

The C language design: no abstraction,

4

Operators

Decisions

Provide typical arithmetic operators: + - * / %

Provide typical relational operators: == != < <= > >=

Each evaluates to 0 FALSE or 1 TRUE

Provide typical logical operators: ! && ||

Each interprets 0 TRUE

Each evaluates to 0 FALSE or 1 TRUE

Provide bitwise operators: ~ & | ^ >> <<

Provide a cast operator: (type)

Aside: Logical vs. Bitwise Ops

Logical NOT (!) vs. bitwise NOT (~)
! 1 (TRUE) 0 (FALSE)

~ 1 (TRUE) -2 (TRUE)

Implication:
Use logical NOT to control flow of logic
Use bitwise NOT only when doing bit-level manipulation

5

Decimal Binary
1 00000000 00000000 00000000 00000001

! 1 00000000 00000000 00000000 00000000

Decimal Binary
1 00000000 00000000 00000000 00000001

~ 1 11111111 11111111 11111111 11111110

Aside: Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)
2 (TRUE) && 1 (TRUE) 1 (TRUE)

2 (TRUE) & 1 (TRUE) 0 (FALSE)

6

Decimal Binary
2 00000000 00000000 00000000 00000010

&& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

1 00000000 00000000 00000000 00000001

Decimal Binary
2 00000000 00000000 00000000 00000010

& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

0 00000000 00000000 00000000 00000000

Aside: Logical vs. Bitwise Ops

Implication:
Use logical AND to control flow of logic
Use bitwise AND only when doing bit-level manipulation

Same for logical OR (||) and bitwise OR (|)

7 8

Assignment Operator

Typical programming
language of 1970s:

Statements, Expressions
stmt ::=

a:=exp

| if exp then stmt else stmt

| while exp do stmt
| begin stmtlist end

stmtlist ::= stmt | stmtlist ; stmt

exp ::=

id | exp+exp | exp-exp | -exp

C language: assignment
is an expression!
stmt ::=

exp ;

| { stmtlist }
| if (exp) stmt else stmt

| while (exp) stmt

stmtlist ::= stmt | stmtlist stmt

exp ::=

id | exp+exp | exp-exp | -exp
| id=exp | exp,exp | exp?exp:exp

9

Assignment Operator

Decisions
Provide assignment operator: =

Side effect: changes the value of a variable
Evaluates to the new value of the variable

10

Assignment Operator Examples

Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

/* Read a character.
Side effect: assign that character to i.
Evaluate to that character.
Compare that character to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

11

Special-Purpose Assignment Operators

Decisions
Provide special-purpose assignment operators:
+= -= *= /= ~= &= |= ^= <<= >>=

Examples

i += j same as i = i + j

i /= j same as i = i / j

i |= j same as i = i | j

i >>= j same as i = i >> j

12

Special-Purpose Assignment Operators

Design decision
Is it worth mucking up the language definition with this feature?

Does it really make programs any faster, or easier to read?

+= -= *= /= ~= &= |= ^= <<= >>=

Answer:
Not much. But consider this example:

p->data[i+j*10].first->next += 1;

13

Special-Purpose Assignment Operators

Increment and decrement operators: ++ --
Prefix and postfix forms

Examples

(1) i = 5;
j = ++i;

(2) i = 5;
j = i++;

(3) i = 5;
j = ++i + ++i;

(4) i = 5;
j = i++ + i++;

What is the
value of i? Of j?

14

Memory allocation

Typical programming
language of 1970s:

Special program statement
to allocate a new object
stmt ::=

new p
This is not so different from

Difficulties:
1.system standard allocator could
be slow, or inflexible
2.What about deallocation?

Automatic garbage collection too
expensive?

C language

Nothing built-in
malloc, free functions provided in

standard library

allow programmers to roll their
own allocation systems

Difficulties:
1.System standard allocator could
be slow, or inflexible

-your-own)

Turns out, by now we know, automatic

after all!

15

Sizeof Operator
Malloc function needs to be told how many bytes to

allocate

struct foo {int a, b; float c;} *p;

p = malloc(12); /* this is correct but not portable */

Issue: How can programmers determine data sizes?

Rationale:
The sizes of most primitive types are unspecified
Sometimes programmer must know sizes of primitive types

E.g. when allocating memory dynamically
Hard code data sizes program not portable
C must provide a way to determine the size of a given data type
programmatically

16

Sizeof Operator

Decisions
Provide a sizeof operator

Applied at compile-time
Operand can be a data type
Operand can be an expression

Compiler infers a data type

Examples, on CourseLab
sizeof(int) 4

sizeof(i) 4
sizeof(i+1)
sizeof(i++ * ++i 5)

What is the
value?

17

Other Operators

Issue: What other operators should C have?

Decisions
Function call operator

Should mimic the familiar mathematical notation

Conditional operator: ?:
The only ternary operator
See King book

Sequence operator: ,
See King book

Pointer-related operators: & *
Described later in the course

Structure-related operators: . ->
Described later in the course

Operators Summary: C vs. Java

Java only
>>> right shift with zero fill
new create an object
instanceof is left operand an object of class right operand?
p.f object field select

C only
p.f structure field select
* dereference
p->f dereference then structure member select: (*p).f
& address of
, sequence
sizeof compile-time size of

18

Operators Summary: C vs. Java

Related to type boolean:
Java: Relational and logical operators evaluate to type boolean
C: Relational and logical operators evaluate to type int
Java: Logical operators take operands of type boolean
C: Logical operators take operands of any primitive type or memory
address

19

Agenda

Data Types

Operators

Statements

I/O Facilities

20

Sequence Statement

Issue: How should C implement sequence?

Decision
Compound statement, alias block

21

{
statement1
statement2

}

Where are the
semicolons?

Selection Statements

Issue: How should C implement selection?

Decisions
if statement, for one-path, two-path decisions

22

if (expr)
statement1

if (expr)
statement1

else
statement2

0 FALSE
non-0 TRUE

Selection Statements

Decisions (cont.)
switch and break statements, for multi-path decisions on a
single integerExpr

23

switch (integerExpr)
{ case integerLiteral1:

break;
case integerLiteral2:

break;

default:

}

What happens
if you forget
break?

Repetition Statements

Issue: How should C implement repetition?

Decisions
while statement; test at leading edge

for statement; test at leading edge, increment at trailing edge

statement; test at trailing edge

24

while (expr)
statement

for (initialExpr; testExpr; incrementExpr)
statement

do
statement

while (expr);

0 FALSE
non-0 TRUE

Declaring Variables

Issue: Should C require variable declarations?

Rationale:
Declaring variables allows compiler to check spelling (compile-time error
messages are easier for programmer than debugging strange behavior at run time!)

Declaring variables allows compiler to allocate memory more
efficiently

25

Where are variables declared?

Typical 1960s language:

Global variables

Typical 1970s language:

Global variables

Local variables declared just
before function body

C language:

Global variables

Local variables can be
declared at beginning of any
{block}, e.g.,

{int i=6, j;

j=7;

if (i>j)

{int x; x=i+j; return x;}

else {int y; y=i-j; return y;}

} scope of variable y ends
at matching close brace

Repetition Statements

Decisions (cont.)
Cannot declare loop control variable in for statement

27

{

for (int i = 0; i < 10; i++)
/* Do something */

}

{
int i;

for (i = 0; i < 10; i++)
/* Do something */

}

Illegal in C
(nobody thought of
that idea in 1970s)

Legal in C

Declaring Variables

Decisions (cont.):
Declaration statements must appear before any other kind of
statement in compound statement

28

{
int i;
/* Non-declaration

stmts that use i. */
i = i+1;
int j;
/* Non-declaration

stmts that use j. */
j = j+1;

}

{
int i;
int j;

/* Non-declaration
stmts that use i. */

i = i+1;
/* Non-declaration

stmts that use j. */
j = j+1;

}

Legal in CIllegal in C
(nobody thought of
that idea in 1970s)

Other Control Statements

Issue: What other control statements should C provide?

Decisions
break statement (revisited)

Breaks out of closest enclosing switch or repetition statement
continue statement

Skips remainder of current loop iteration
Continues with next loop iteration
When used within for, still executes incrementExpr

goto statement
Jump to specified label

29

Declaring Variables

Decisions:
Require variable declarations
Provide declaration statement
Programmer specifies type of variable (and other attributes too)

Examples
int i;
int i, j;
int i = 5;
const int i = 5; /* value of i cannot change */
static int i; /* covered later in course */
extern int i; /* covered later in course */

30

Computing with Expressions

Issue: How should C implement computing with
expressions?

Decisions:
Provide expression statement

expression ;

31

Computing with Expressions

Examples

32

i = 5;
/* Side effect: assign 5 to i.

Evaluate to 5. Discard the 5. */

j = i + 1;
/* Side effect: assign 6 to j.

Evaluate to 6. Discard the 6. */

printf("hello");
/* Side effect: print hello.

Evaluate to 5. Discard the 5. */

i + 1;
/* Evaluate to 6. Discard the 6. */

5;
/* Evaluate to 5. Discard the 5. */

Statements Summary: C vs. Java

Declaration statement:
Java: Compile-time error to use a local variable before specifying its
value
C: Run-time error to use a local variable before specifying its value

final and const
Java: Has final variables
C: Has const variables

Expression statement
Java: Only expressions that have a side effect can be made into
expression statements
C: Any expression can be made into an expression statement

33

Statements Summary: C vs. Java

Compound statement:
Java: Declarations statements can be placed anywhere within
compound statement
C: Declaration statements must appear before any other type of
statement within compound statement

if statement
Java: Controlling expr must be of type boolean
C: Controlling expr can be any primitive type or a memory address
(0 FALSE, non-0 TRUE)

while statement
Java: Controlling expr must be of type boolean
C: Controlling expr can be any primitive type or a memory address
(0 FALSE, non-0 TRUE)

34

Statements Summary: C vs. Java

statement
Java: Controlling expr must be of type boolean
C: Controlling expr can be of any primitive type or a memory
address (0 FALSE, non-0 TRUE)

for statement
Java: Controlling expr must be of type boolean
C: Controlling expr can be of any primitive type or a memory
address (0 FALSE, non-0 TRUE)

Loop control variable
Java: Can declare loop control variable in initexpr
C: Cannot declare loop control variable in initexpr

35

Statements Summary: C vs. Java

break statement
Java: Also has labeled break statement
C: Does not have labeled break statement

continue statement
Java: Also has labeled continue statement
C: Does not have labeled continue statement

goto statement
Java: Not provided
C: Provided (but don t use it!)

36

Agenda

Data Types

Operators

Statements

I/O Facilities

37

I/O Facilities

Issue: Should C provide I/O facilities?

(many languages of the 1960s / 1970s had built-in special-
purpose commands for input/output)

Thought process
Unix provides the file abstraction

A file is a sequence of characters with an indication of the current
position

Unix provides 3 standard files
Standard input, standard output, standard error

C should be able to use those files, and others
I/O facilities are complex
C should be small/simple

38

I/O Facilities

Decisions
Do not provide I/O facilities in the language
Instead provide I/O facilities in standard library

Constant: EOF
Data type: FILE (described later in course)
Variables: stdin, stdout, and stderr
Functions

39 40

Reading Characters

Issue: What functions should C provide for reading
characters?

Thought process
Need function to read a single character from stdin

indicate failure

41

Reading Characters

Decisions
Provide getchar() function*
Define getchar() to return EOF upon failure

EOF is a special non-character int
Make return type of getchar() wider than char

Make it int; that's the natural word size

Reminder
There is no such thing as the EOF character

42

Writing Characters

Issue: What functions should C provide for writing
characters?

Thought process
Need function to write a single character to stdout

Decisions
Provide putchar() function
Define putchar() to have int parameter

For symmetry with getchar()

43

Reading Other Data Types

Issue: What functions should C provide for reading data
of other primitive types?

Thought process
Must convert external form (sequence of character codes) to internal
form
Could provide getshort(), getint(), getfloat(), etc.
Could provide parameterized function to read any primitive type of
data

44

Reading Other Data Types

Decisions
Provide scanf() function

Can read any primitive type of data
First parameter is a format string containing conversion
specifications

Reading Other Data Types

45

00000000000000000000000001111011

scanf("%d", &i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications

What is this
ampersand?
Covered later
in course.

46

Writing Other Data Types

Issue: What functions should C provide for writing data
of other primitive types?

Thought process
Must convert internal form to external form (sequence of character
codes)
Could provide putshort(), putint(), putfloat(), etc.
Could provide parameterized function to write any primitive type of
data

47

Writing Other Data Types

Decisions
Provide printf() function

Can write any primitive type of data
First parameter is a format string containing conversion
specifications

Writing Other Data Types

48

00000000000000000000000001111011

printf("%d", i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications

49

Other I/O Facilities

Issue: What other I/O functions should C provide?

Decisions
fopen(): Open a stream
fclose(): Close a stream
fgetc(): Read a character from specified stream
fputc(): Write a character to specified stream
gets(): Read a line from stdin. Brain-damaged, never use this!
fgets(): Read a line/string from specified stream
fputs(): Write a line/string to specified stream
fscanf(): Read data from specified stream
fprintf(): Write data to specified stream

Described in King book, and later in the course after covering
files, arrays, and strings

Summary

C design decisions and the goals that affected them
Data types
Operators
Statements
I/O facilities

Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

50

51

Appendix: The Cast Operator

Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
Compiler generates code
At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f

52

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
Compiler generates code
At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d

53

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
Compiler generates code
At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c

54

Appendix: The Cast Operator

(4) Cast between integer types of same size:
Compiler generates no code
Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u

