Princeton University

Computer Science 217: Introduction to Programming Systems

COS 217: Introduction to **Programming Systems**

Agenda

Course overview

- Introductions
- Course goals
- Resources
- Grading
- Policies Schedule

Getting started with C

- · History of C
- · Building and running C programs
- · Characteristics of C
- · C details (if time)

Introductions

Professor

· Andrew W. Appel appel@cs.princeton.edu

Lead Preceptors

• lasonas Petras ipetras@cs.princeton.edu • Xiaoyan Li xiaoyan@cs.princeton.edu

Faculty Preceptors

 Donna Gabai dgabai@princeton.edu

Preceptors

• Oluwatosin Adewale • Gregory W. Gundersen

ggundersen@princeton.edu Seo Young Kyung

· Austin Le

skyung@princeton.edu

oadewale@princeton.edu

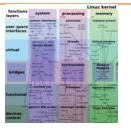
austinle@princeton.edu

Agenda

Course overview

- Introductions
- · Course goals
- Resources
- Grading
- Policies
- Schedule

Getting started with C


- History of C
- · Building and running C programs
- · Characteristics of C
- · C details (if time)

Goal 1: Programming in the Large

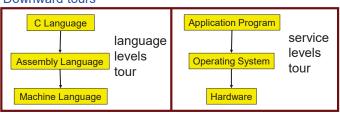
Goal 1: "Programming in the large"

· Help you learn how to write large computer programs

Topics

· Modularity/abstraction, information hiding, resource management, error handling, testing, debugging, performance improvement, tool support

Goal 2: Under the Hood



Learn "how to be a client of an operating system

Downward tours

functions layers system layers

Goals: Why C?

Question: Why C instead of Java?

Semi-answer: C and Java are both very widely used in software development; they use different approaches to memory management; good to understand both approaches

Answer: C is the primary language for low-level systems (operating systems, devices)

Goals: Why Linux?

Question: Why Linux instead of MS Windows or MacOs?

Answer 1: Linux is the most widely used platform for professional software development

Answers 2,3: Linux (with GNU) has excellent open-source tool suites, doesn't lock you in to a single proprietary vendor; Linux/GNU is elegant and easily scriptable. (These help explain Answer 1)

1/

Agenda

Course overview

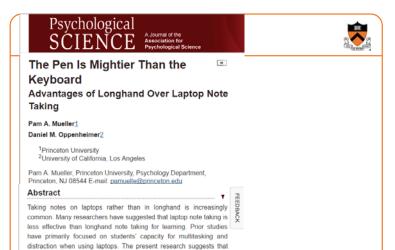
- · Introductions
- Course goals
- Resources
- Grading
- Policies
- Schedule

Getting started with C

- · History of C
- Building and running C programs
- Characteristics of C
- · C details (if time)

Lectures

Lectures


- Describe material at conceptual (high) level
- · Slides available via course website

Lecture etiquette

- · Let's start on time, please
- Please don't use electronic devices during lectures

 If you must phiddle with your phone or laptop, sit in the back row where you won't distract other students

Precepts

Section and Property of the Party of the Par

Precepts

- · Describe material at the "practical" low level
- · Support your work on assignments
- · Hard copy handouts distributed during precepts
- · Handouts available via course website

Precept etiquette

- · Attend your precept
- Use SCORE to move to another precept
 - Trouble ⇒ See Colleen Kenny-McGinley (CS Bldg 210)
 - But Colleen can't move you into a full precept
- Must miss your precept? ⇒ inform preceptors & attend another

Precepts begin Monday

14

Website

Website

· Access from http://www.cs.princeton.edu/courses/schedule

even when laptops are used solely to take notes, they may still be impairing learning because their use results in shallower processing. In three studies, we found that students who took notes on laptops

performed worse on conceptual questions than students who took notes longhand. We show that whereas taking more notes can be

- Princeton CS \rightarrow Courses \rightarrow Course Schedule \rightarrow COS 217
- · Home page, schedule page, assignment page, policies page

15

Piazza

Piazza

- http://piazza.com/class#fall2017/cos217/
- · Instructions provided in first precept

Piazza etiquette

- Study provided material before posting question
 - · Lecture slides, precept handouts, required readings
- Read all (recent) Piazza threads before posting question
- · Don't show your code!!!
 - · See course policies

Books

The Practice of Programming (recommended)

- Kernighan & Pike
- · "Programming in the large"

Computer Systems: A Programmer's Perspective (Third Edition) (recommended)

- · Bryant & O'Hallaron
- "Under the hood"

C Programming: A Modern Approach (Second Edition) (required)

- King
- · C programming language and standard libraries

Manuals

Manuals (for reference only, available online)

- Intel 64 and IA-32 Architectures Software Developer's Manual, Volumes 1-3
- Intel 64 and IA-32 Architectures Optimization Reference Manual
- Using as, the GNU Assembler

See also

• Linux man command

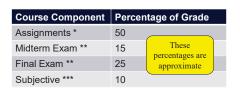
Server Client CourseLab Cluster Your Computer Linux GNU Your Pgm courselab01 courselab02 On-campus or off-campus

Agenda

Service of the servic

Course overview

- Introductions
- · Course goals
- Resources
- Grading
- Policies
- Schedule


Getting started with C

- · History of C
- Building and running C programs
- · Characteristics of C
- · C details (if time)

20

Grading

- * Final assignment counts double; penalties for lateness
- ** Closed book, closed notes, no electronic devices
- *** Did your involvement benefit the course as a whole?
 - · Precept attendance and participation counts

21

Programming Assignments

Programming assignments

- 0. Introductory survey
- 1. "De-comment" program
- 2. String module
- 3. Symbol table module
- 4. Assembly language programs
- 5. Buffer overrun attack (partner from your precept)
- 6. Heap manager module (partner from your precept)
- 7. Unix shell

Assignments 0 and 1 are available now

Start early!!!

22

Agenda

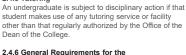
Course overview

- · Introductions
- Course goals
- Resources
- Grading
- PoliciesSchedule

Getting started with C

- History of C
- Building and running C programs
- Characteristics of C
- · C details (if time)

University rules:


Rights, Rules,

Responsibilities

Sources of help, citing your sources

2.4.5 Tutoring

2.4.6 General Requirements for the Acknowledgment of Sources in Academic Work

... An important general rule is this: if you are unsure whether or not to acknowledge a source, always err on the side of caution and completeness by citing rather than not citing.

In those cases where individual reports are submitted based on work involving collaboration, proper acknowledgment of the extent of the collaboration must appear in the report. . . . each student's signature is taken to mean that the student has contributed fairly to the work involved . . .

Policies

Study the course "Policies" web page!

Especially the assignment collaboration policies

- · Violations often involve trial by Committee on Discipline
- Typical course-level penalty is F for course
- Typical University-level penalty is suspension from University for 1 academic year

25

Assignment Related Policies

Some highlights:

- · You may not reveal any of your assignment solutions (products, descriptions of products, design decisions) on Piazza.
- Getting help: To help you compose an assignment solution you may use only authorized sources of information, may consult with other people only via the course's Piazza account or via interactions that might legitimately appear on the course's Piazza account, and must declare your sources in your readme file for the assignment.
- Giving help: You may help other students with assignments only via the course's Piazza account or interactions that might legitimately appear on the course's Piazza account, and you may not share your assignment solutions with anyone, ever, in any form.

Ask the professor for clarifications

· Only Prof. Appel can waive any policies (and only in writing)

Agenda

Course overview

- Introductions
- · Course goals
- Resources
- Grading
- Policies
- Schedule

Getting started with C

- · History of C
- · Building and running C programs
- · Characteristics of C
- · C details (if time)

Course Schedule

Weeks	Lectures	Precepts
1-2	Number Systems C (conceptual)	Linux/GNU C (pragmatic)
3-6	Programming in the Large	Advanced C
6	Midterm Exam	
7	Recess	
8-13	"Under the Hood" (conceptual)	"Under the Hood" (pgmming asgts)
	Reading Period	
	Final Exam	

Agenda

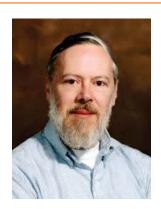
Course overview

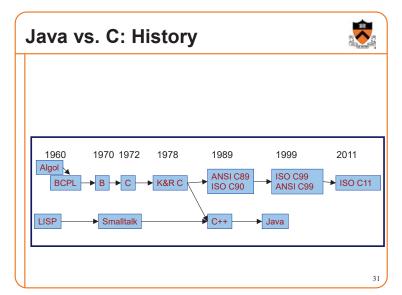
- Introductions
- · Course goals
- Resources
- Grading Policies
- Schedule

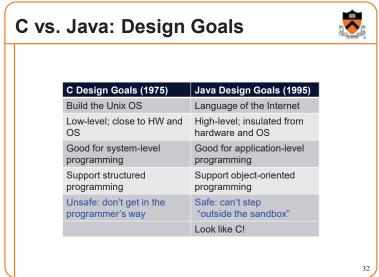
Getting started with C

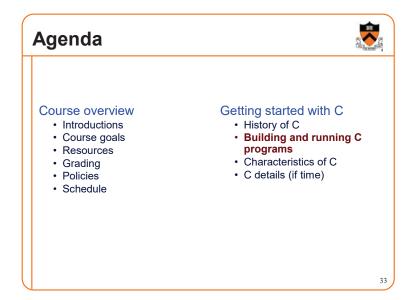
- · History of C
- · Building and running C programs
- · Characteristics of C
- · C details (if time)

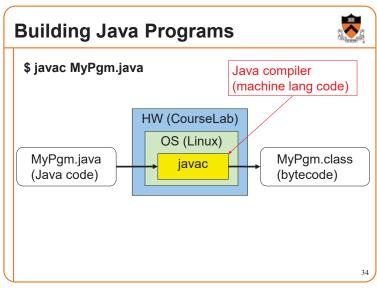
The C Programming Language

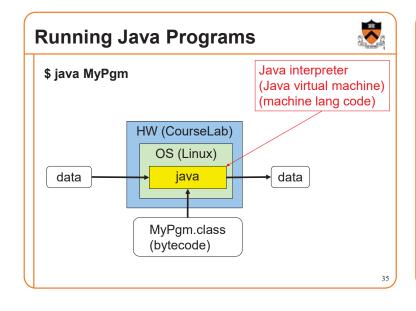


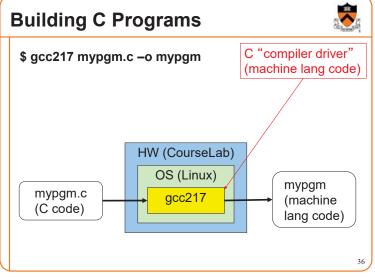

When? ~1972

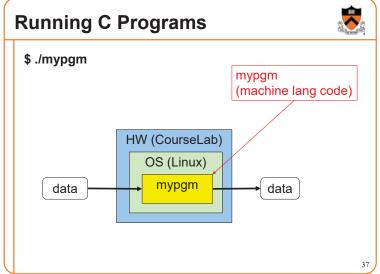

Where? Bell Labs

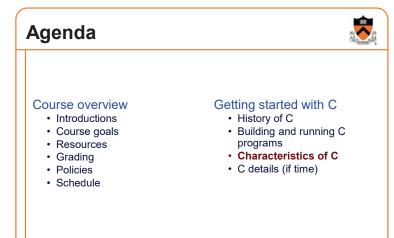

Who? Dennis Ritchie

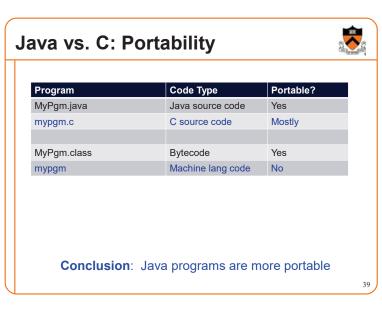

Why? Compose the Unix OS

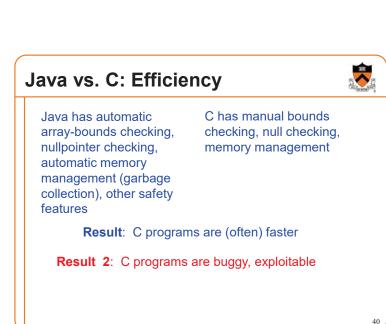


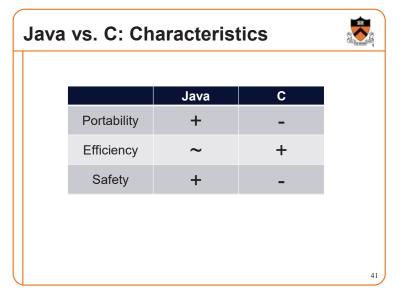


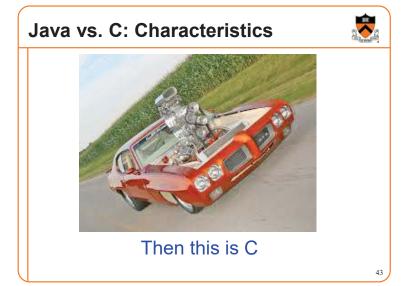












Section of the last of the las

Course overview

- Introductions
- Course goals
- Resources
- Grading
- Policies
- Schedule

Getting started with C

- History of C
- Building and running C programs
- Characteristics of C
- · C details (if time)

4

Java vs. C: Details

Remaining slides provide some details

Use for future reference

Slides covered now, as time allows...

Java vs. C: Details

	Java	С
	Hello.java:	hello.c:
Overall Program Structure	<pre>public class Hello { public static void main (String[] args) { System.out.println(</pre>	<pre>#include <stdio.h> int main(void) { printf("hello, world\n"); return 0; }</stdio.h></pre>
Building	\$ javac Hello.java	\$ gcc217 hello.c -o hello
Running	<pre>\$ java Hello hello, world \$</pre>	<pre>\$./hello hello, world \$</pre>

45

Java vs. C: Details

	Java	С
Character type	char // 16-bit Unicode	char /* 8 bits */
Integral types	byte	<pre>(unsigned) char (unsigned) short (unsigned) int (unsigned) long</pre>
Floating point types	float // 32 bits double // 64 bits	float double long double
Logical type	boolean	<pre>/* no equivalent */ /* use integral type */</pre>
Generic pointer type	Object	void*
Constants	final int MAX = 1000;	<pre>#define MAX 1000 const int MAX = 1000; enum {MAX = 1000};</pre>

Java vs. C: Details

	Java	С
Arrays	<pre>int [] a = new int [10]; float [][] b = new float [5][20];</pre>	<pre>int a[10]; float b[5][20];</pre>
Array bound checking	// run-time check	/* no run-time check */
Pointer type	<pre>// Object reference is an // implicit pointer</pre>	int *p;
Record type	<pre>class Mine { int x; float y; }</pre>	<pre>struct Mine { int x; float y; };</pre>

Java vs. C: Details

	Java	С
Strings	<pre>String s1 = "Hello"; String s2 = new String("hello");</pre>	<pre>char *s1 = "Hello"; char s2[6]; strcpy(s2, "hello");</pre>
String concatenation	s1 + s2 s1 += s2	<pre>#include <string.h> strcat(s1, s2);</string.h></pre>
Logical ops *	&&, , !	&&, , !
Relational ops *	=, !=, >, <, >=, <=	=, !=, >, <, >=, <=
Arithmetic ops *	+, -, *, /, %, unary -	+, -, *, /, %, unary -
Bitwise ops	>>, <<, >>>, &, , ^	>>, <<, &, , ^
Assignment ops	=, *=, /=, +=, -=, <<=, >>=, >>>=, =, &=, ^=, =, %=	=, *=, /=, +=, -=, <<=, >>=, =, &=, ^=, =, %=

^{*} Essentially the same in the two languages

Java vs. C: Details

	Java	С
if stmt *	<pre>if (i < 0) statement1; else statement2;</pre>	<pre>if (i < 0) statement1; else statement2;</pre>
switch stmt *	<pre>switch (i) { case 1:</pre>	<pre>switch (i) { case 1:</pre>
goto stmt	// no equivalent	goto someLabel;

^{*} Essentially the same in the two languages

Java vs. C: Details

	Java	С
for stmt	<pre>for (int i=0; i<10; i++) statement;</pre>	<pre>int i; for (i=0; i<10; i++) statement;</pre>
while stmt *	<pre>while (i < 0) statement;</pre>	<pre>while (i < 0) statement;</pre>
do-while stmt *	<pre>do statement; while (i < 0)</pre>	<pre>do statement; while (i < 0);</pre>
continue stmt *	continue;	continue;
labeled continue stmt	continue someLabel;	/* no equivalent */
break stmt *	break;	break;
labeled break stmt	break someLabel;	/* no equivalent */

Essentially the same in the two languages

Java vs. C: Details

	Java	С
return stmt *	return 5; return;	return 5; return;
Compound stmt (alias block) *	<pre>{ statement1; statement2; }</pre>	<pre>{ statement1; statement2; }</pre>
Exceptions	throw, try-catch-finally	/* no equivalent */
Comments	/* comment */ // another kind	/* comment */
Method / function call	<pre>f(x, y, z); someObject.f(x, y, z); SomeClass.f(x, y, z);</pre>	f(x, y, z);

^{*} Essentially the same in the two languages

52

Example C Program

51

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
{ const double KMETERS_PER_MILE = 1.609;
  int miles;
  double kMeters;
  printf("miles: ");
  if (scanf("%d", &miles) != 1)
   { fprintf(stderr, "Error: Expected a number.\n");
     exit(EXIT_FAILURE);
  kMeters = (double)miles * KMETERS_PER_MILE;
  printf("%d miles is %f kilometers.\n",
     miles, kMeters);
  return 0;
```

Summary

Course overview

- Introductions
- · Course goals
 - · Goal 1: Learn "programming in the large"
 - Goal 2: Look "under the hood" and learn low-level programming
 - Use of C and Linux supports both goals
- - Lectures, precepts, programming environment, Piazza, textbooks
 - Course website: access via http://www.cs.princeton.edu
- Grading
- Policies
- Schedule

Summary

Getting started with C

- History of C
- Building and running C programs
- · Characteristics of C
- · Details of C
 - Java and C are similar
 - Knowing Java gives you a head start at learning C

Getting Started

Check out course website soon

- Study "Policies" page
- First assignment is available

Establish a reasonable computing environment **soon**

• Instructions given in first precept

-