
COS 126 General Computer Science Spring 2013

Programming Exam 2

This programming exam has 2 parts, weighted as indicated. The exam is semi-open: you may
use the course website, the booksite, any direct links from those two, the textbook, any printed or
written notes, and your past coursework on your computer. You may not use other websites. No
communication is permitted, except with course staff members.

Upload your code to the dropbox. As with the COS 126 assignments, you can submit your code
multiple times for testing, but only the last version will be graded.

Your code will be graded primarily on correctness. You will lose a substantial number of points if
your program does not compile. However, efficiency, clarity, and code style are also factors in your
grade. Remember to include headers and comments in your code. Headers MUST include your
name, netID and precept number.

Print your name, netID, and precept number on this page (now), and write out and sign the Honor
Code pledge before turning in this paper. It is a violation of the Honor Code to discuss this exam
until everyone in the class has taken the exam. You have 90 minutes to complete the test. Do not
remove this exam from the exam room.

Write out and sign the Honor Code pledge before turning in the test:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge:

Signature:

P01 12:30 TTh Dave Pritchard
P01A 12:30 TTh Donna Gabai
P01B 12:30 TTh Pawel Przytycki
P02 1:30 TTh Tom Funkhouser
P02A 1:30 TTh Allison Chaney
P02B 1:30 TTh Pawel Przytycki
P02C 1:30 TTh Vivek Pai
P02D 1:30 TTh Siddhartha Chaudhuri
P03 2:30 TTh Tom Funkhouser
P03A 2:30 TTh Allison Chaney
P04 3:30 TTh Vivek Pai
P04B 3:30 TTh Shilpa Nadimpalli
P05 7:30 TTh Shilpa Nadimpalli
P06 10am WF Lennart Beringer
P07 1:30 WF Dave Pritchard
P07A 1:30 WF Kevin Lee
P07B 1:30 WF Siyu Liu
P08 12:30 WF Donna Gabai
P08A 12:30 WF Judi Israel
P09 11am WF Judi Israel

Name:

NetID:

Precept:

Problem Score

Person /22

TigerBook /8

Total /30



Your task is to create two .java files:

• Person.java, which models a person, his/her friendships, and messages they can read.

• TigerBook.java, which models a collection of Person objects.

Several code fragments and test files that we refer to below are located at

http://www.cs.princeton.edu/courses/archive/spring13/cos126/docs/data/TigerBook

To submit your code click on Submit for Exam 2 on the Assignments Page, or directly visit

https://dropbox.cs.princeton.edu/COS126_S2013/Exam2

Part 1: Person

In the first part of this exam, you will create a simple model Person for a person, their friends,
and a list of messages they can read. It should implement the following API:

public class Person
--------------------------------------------------------------------------------------------

Person(String name) // Create a new Person with this name.

void meet(Person otherPerson) // Make these two people become friends with each other.
// If otherPerson is the same as this person, throw a
// RuntimeException (you can’t be your own friend).

boolean knows(Person otherPerson) // Are these two people friends?
// If otherPerson is the same as this person, throw a
// RuntimeException (since you can’t be your own friend).

void post(String message) // Post a message. It should be added to the message
// list of this Person, and the message lists of
// all current friends of this Person.

void listMessages() // Print a header (see format on next page), then all
// messages ever posted to this Person, most recent first.

--------------------------------------------------------------------------------------------
(everything listed in this API must be public)

Here are some additional suggestions to help interpret the API requirements.

• The constructor should initialize the instance variables. Think carefully about what instance
variables you need in order to store the name, list of friends and list of messages for each
Person. The last page of this exam contains APIs for some useful Abstract Data Types
that you may use. Uploading .java files for ADTs other than these will not be permitted by
the submission webserver.

• The meet() method should add otherPerson to the friend list of this Person. Friendship is
reciprocated, so also add this Person to the friend list of otherPerson. The methods knows()
and post() will use this list.

2

http://www.cs.princeton.edu/courses/archive/spring13/cos126/docs/data/TigerBook
https://dropbox.cs.princeton.edu/COS126_S2013/Exam2


• In meet(otherPerson) you may assume that otherPerson is not yet a friend (we will never
test this case).

• Remember to throw a RuntimeException in knows() or meet() if this person is the same as
the other person. The exception message can be anything you choose.

Here is a small example. In the comments we describe the expected behaviour.

Person first = new Person("Kim");

Person second = new Person("Pat");

StdOut.println(first.knows(second)); // should print "false"

first.meet(second);

StdOut.println(first.knows(second)); // should print "true"

StdOut.println(second.knows(first)); // should print "true"

first.knows(first); // should throw a RuntimeException

(This example is Person.example1.txt in the online testing files.)

The post() method should add a message to the message list of this Person, and to all friends
of this Person. These messages will be read using listMessages().

• Unlike facebook.com, you do not have to spread the message to friends of friends, etc. Only
the person themself and the direct friends of the person should get a copy.

• Unlike facebook.com, messages only become visible to people with whom you are friends right
now. Meeting someone doesn’t retroactively give you copies of old messages that s/he posted
earlier.

The required behaviour for calling listMessages() on a Person is that it must:

• First, print a header line to StdOut in the format
== The wall of Kim ==

where “Kim” is replaced by the name of the Person.

• Then, print to StdOut each of that person’s messages on a separate line, with the newest one
first.

Note that messages are not deleted by listMessages(). They remain in the Person’s list of
messages.

3



Here is another test, for the post() and listMessages() methods.

Testing code:

Person first = new Person("Kim");

Person second = new Person("Pat");

first.post("Only Kim can read this");

first.meet(second);

second.post("Friends are awesome");

first.post("I agree");

first.listMessages();

second.listMessages();

When run, it should print:

== The wall of Kim ==

I agree

Friends are awesome

Only Kim can read this

== The wall of Pat ==

I agree

Friends are awesome

(This example is Person.example2.txt in the online testing files.)

Upload your part 1 code before proceeding, to see if there are any bugs caught by the dropbox tests.
It does not matter if you leave a main method in Person.

You do not need to upload the .java files for Stack, Queue or ST.

Part 2: TigerBook

The second class that you will implement is TigerBook. Each TigerBook object contains a list of
registered users (Person objects) and their user ids. For the purposes of the TigerBook class, you
should assume each Person’s id is distinct. The TigerBook API is:

public class TigerBook
-------------------------------------------------------------------------------------------

TigerBook() // Create a new TigerBook instance.

void register(String id, Person p) // Add a person to the directory of registered users.
// You may assume "id" was never registered before.

Person lookup(String id) // Return the Person who registered with this id.
// If nobody ever registered with this id, then
// throw a RuntimeException.

-------------------------------------------------------------------------------------------
(everything listed in this API must be public)

Here is a small example. In the comments we describe the expected behaviour.

TigerBook t = new TigerBook();

Person first = new Person("Tony");
t.register("tony10010", first);

Person personFound = t.lookup("tony10010");
personFound.listMessages(); // should print: == The wall of Tony ==

Person nobody = t.lookup("tony-the-tiger"); // should throw a RuntimeException

4



(This example is TigerBook.example.txt in the online testing files.) Note that TigerBook does
not need to deal with messages, friends, or walls, since the Person class does this for us.

This completes the description of your tasks. Testing and reference information follows.
Remember to upload your work to the dropbox. It does not matter if you leave a main method in

TigerBook.

ExampleClient.java

We provide a client ExampleClient.java for your programs in the online files, and several test
files. It reads in commands from standard input; some of these commands produce output. The
ExampleClient header contains a detailed description of the input format. Using this testing client
is optional.

Example: friendly.txt contains

Charles registers

Charles posts Difference Engine is meh.

Ada registers

Ada queries Charles

Ada meets Charles

Ada queries Charles

Ada posts Analytical Engine rocks!

Ada reads

Charles reads

java ExampleClient < friendly.txt outputs:

Are Ada and Charles friends? false

Are Ada and Charles friends? true

== The wall of Ada ==

Analytical Engine rocks!

== The wall of Charles ==

Analytical Engine rocks!

Difference Engine is meh.

Note: ExampleClient.java does not need modification and should not be submitted.

5



APIs for common ADTs

This section lists some useful parts of the APIs for the Stack, Queue, and ST data types. For
convenience, if you have not yet downloaded the files for these data types, you can download them
at:

http://www.cs.princeton.edu/courses/archive/spring13/cos126/docs/data/ADT

Make sure they are in the exact same directory as your Person.java and TigerBook.java files.

public class Stack<Item> implements Iterable<Item>

----------------------------------------------------------------------------

Stack() // Create an empty stack.

boolean isEmpty() // Is the stack empty?

void push(Item item) // Push item onto the top of the stack.

Item pop() // Remove and return item at top of stack.

Iteration on Stack uses LIFO order. Iteration does not alter the Stack.

public class Queue<Item> implements Iterable<Item>

----------------------------------------------------------------------------

Queue() // Create an empty queue.

boolean isEmpty() // Is the queue empty?

void enqueue(Item item) // Add item to the end of the list.

Item dequeue() // Remove and return item from beginning of list.

Iteration on Queue uses FIFO order. Iteration does not alter the Queue.

public class ST<Key extends Comparable<Key>, Value>

----------------------------------------------------------------------------

ST() // Create an empty symbol table.

boolean contains(Key key) // Is there a value paired with key?

void put(Key key, Value v) // Put key-value pair into the table.

Value get(Key key) // Return value paired with key, or return null

// if this key was never put into the table.

Iteration on ST uses the order of the Key. Iteration does not alter the ST.

6

http://www.cs.princeton.edu/courses/archive/spring13/cos126/docs/data/ADT

