
COS 126 General Computer Science Fall 2017

Programming Exam 2

Instructions. This exam has only one part. You have 50 minutes. The exam is open
course materials, which includes the course textbook, the companion booksite, the course
website, your course notes, and code you wrote for the course. Accessing other information or
communicating with a non-staff member (such as via email, text, Facebook, Piazza, phone,
or Snapchat) is prohibited.

Setup. You may download the necessary files from the Class Meetings page now.

Submission. Submit your solution via the link on the Class Meetings page. Click the Check
All Submitted Files button to verify your submission. You may submit multiple times.

Grading. Your program will be graded for correctness, clarity (including comments),
design, and efficiency. You will receive partial credit for a program that correctly implements
some of the required functionality. You will receive a substantial penalty if your program
does not compile or if you do not follow the prescribed input/output specifications.

Discussing this exam. Discussing or communicating the contents of this exam before
solutions have been posted is a violation of the Honor Code.

This exam. You must turn in this physical exam. Print your name, NetID, precept, and
the room in which you are taking the exam in the space below. Also, write and sign the
Honor Code pledge. You may fill in this information now.

Name:

NetID:

Exam Room:

Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature



Problem: Compute Geographical Path Statistics. (30 Points) Complete the given
Path.java file so that it meets the specifications below. The main method is done for
you and must not be modified. Use the given Coordinate.java and Stats.java without
modification.

Input Specification. The input from standard input consists of zero or more lines with
three doubles per line separated by a space. Each line is a geographical Earth coordinate:
a longitude in decimal degrees, a latitude in decimal degrees, and an altitude in meters.
These coordinates together represent a path from the first coordinate to the last coordinate.

The file COS126Walk.txt contains two coordinates: the location of McCosh 10, the start
point of the path, and the location of the CS Building, the end point of the path.
For each line in the input, the given main method reads the coordinates, creates a Coordinate

object (defined in Coordinate.java), and calls your addWaypoint method to add the coor-
dinate to the path object (created initially by a call to the constructor). Your addWaypoint
method must add the Coordinate objects to a linked list of your own design.
As described below, program behavior changes depending on the presence of an optional

integer command line argument. Your program need not handle non-conforming inputs.

Output SpecificationWithout Command Line Argument. (20 of the 30 points) If
no command line argument is provided, main prints the path using a call to the Path.toString
method that you must implement. For each coordinate in the path, your Path.toString

method should include the result of calling Coordinate.toString on that coordinate fol-
lowed by a newline. (If the path is empty, print nothing.) Example output:

Output SpecificationWith Command Line Argument. (10 of the 30 points) If
invoked with an integer command line argument (an altitude threshold described below),
main prints path statistics computed by calling your Path.java computeStats method.
The output for COS126Walk.txt is:

Your computeStats method must calculate these statistics, store them in a Stats object
(created by calling the provided Stats.java class constructor with these values), and return

2



a reference to this newly created Stats object. The provided Path.java contains a dummy
computeStats that returns zeros for all statistics. The statistics to compute are:

Points: Number of geographical coordinate points in the path.

Distance: The distance of the path. Use the provided Coordinate.haversineDist method
to compute the distance between two coordinates using the Haversine formula.1

High: The maximum of all coordinate altitudes.

Low: The minimum of all coordinate altitudes.

Tot. Asc: The total ascent is the sum of all altitude increases. Total ascent ignores all
altitude decreases. Total ascent is subject to the altitude threshold as described below.

Tot. Desc: The total descent is the sum of all altitude decreases. Total descent ignores
all altitude increases. Total descent is subject to the altitude threshold as described
below.

Calculating Total Ascent/Descent with Altitude Threshold. Consider the following
altitude sequence:

Measured: 10, 11, 9, 11, 10, 11, 12, 11, 14, 15, 17, 14

Asc/Desc: --, +1, -2, +2, -1, +1, +1, -1, +3, +1, +2, -3

Assuming that these measured altitudes are accurate, the total ascent is 1 + 2 + 1 + 1 +

3 + 1 + 2 = 11 and the total descent is 2 + 1 + 1 + 3 = 7.
Unfortunately, GPS altitude measurements are notoriously inaccurate, and you are being

provided with input files with coordinates collected by GPS. Unaddressed, erroneous fluc-
tuations in altitude will be counted as actual climbing and descending, artificially inflating
total ascent/descent. To address this issue, GPS path calculators will only note vertical
movements when the magnitude of such movement exceeds a threshold value. You will
do the same with the altitude threshold given on the command line in your Path.java

calculateStats method.
To illustrate threshold usage, consider the same sequence with an altitude threshold of 2:

Measured: 10, 11, 9, 11, 10, 11, 12, 11, 14, 15, 17, 14

Noted: 10, --, --, --, --, --, --, --, 14, --, 17, 14

Asc/Desc: --, --, --, --, --, --, --, --, +4, --, +3, -3

Using only the noted measurements, the total ascent becomes 4 + 3 = 7 and total descent
becomes 3. This is likely closer to the truth.
The altitude sequence used in this example is given in the provided Levitate.txt. You

can use this file to test your program with altitude thresholds of 0 and 2 as in the above
example. (There is no horizontal movement recorded among Levitate.txt’s 12 points, so
path distance is 0 meters.)
Note: the altitude threshold is not used to calculate the altitude high and low statistics.

1Given two points, the Haversine formula computes the great-circle distance on a sphere. The Earth is
not a sphere, the Haversine formula doesn’t compensate for increased horizontal distance at altitude, and it
is not ideal for short distances, but it is good enough for our purposes.

3



Requirements.

• You must store all coordinates as Coordinate class objects in a linked list of your own
design.

• You must implement Path.addWaypoint, Path.computeStats, and Path.toString.
You may modify the Path constructor and add private variables and classes.

• Your program must take no longer than a few seconds to run on any of the given
inputs.

Suggestion. Do the linked list implementation, addWaypoint, and toString first. These
are worth the most points. Do the ascend/descend with threshold computation last after
everything else is tested and working. The points return on effort for that part is the lowest.

Other Inputs for Testing. Assume that the submission scripts will not perform any
significant testing for you. You may use the following inputs to test your code on your
computer. You may also want to test other conforming inputs such as a zero coordinate
path (all statistics are zero) and a one coordinate path (number of points is one, high and
low are equal to coordinate altitude, and all other statistics are zero).

NickMarathon.txt - the NYC Marathon as run by Professor Nick Feamster. Threshold is
set to 7 meters.

DavidHike.txt - a hike over Sugarloaf Mountain in the Catskills by Professor David August.
Threshold is set to 15 meters.

Submission. Submit only Path.java via the link on the Class Meetings page.

After the Exam. If you would like to view or examine paths using a tool like Google Earth,
you can produce KML files by printing the strings produced by calling Coordinate.KMLHeader,
Path.toString, and Coordinate.KMLFooter in that order.

4


