1. Review of where we’ve been
 a. Started with discussion of Mac vs. PC
 b. Looked inside old PC to see the parts
 i. CPU
 ii. RAM
 iii. Disk
 iv. Motherboard
 v. Connections
 c. Talked about sizes of things
 d. Talked about difference between analog disks (spinning platter) and digital disks (solid state memory)
 e. Wires carry signals
 i. Can be 1 or 0; called bits
 ii. Group of 8 bits is a byte
 f. Changes over time
 i. More transistors on an integrated circuit
 ii. Fewer parts overall
 iii. Cheaper, faster, better
 g. Digital representations
 i. Conversion among binary, decimal and hexadecimal
 ii. Place notation
 iii. How many digits, bits, ... to represent ...
 iv. Using bytes to represent
 1. Sounds – sample and compress
 2. Images – RGB values
 3. Text – ASCII is giving way to Unicode
 4. Movies == Sounds + Images
 v. Talked about the growth in the amount of information
 h. Challenges and opportunities of digital representations
 i. Architecture of the CPU and RAM
 i. ALU
 ii. Accumulator
 iii. Memory
 iv. Finite state control
 1. Fetch/execute cycle
 j. Toy language to let us program
 i. Instruction set
 ii. Sample programs
 iii. Flowcharting as a way to understand more complicated programs
 k. Von Neumann architecture
 i. RAM includes both instructions and data
 l. Inside the finite state machine
 i. Building a finite state machine
 1. Alphabet
2. States

 3. Transitions

 ii. Worked some examples

m. Inside the ALU

 i. Truth tables to represent a computation

 ii. Basic building blocks – AND, OR, NOT

 iii. Advanced building blocks – XOR, NAND, NOR

 iv. One bit half adder

 v. One bit full adder

 vi. Growing it to get to a carry-ripple adder

 vii. How gates are drawn

n. Building the circuitry

 i. Transistors

 ii. Realizing transistors from materials – silicon, conductors, insulators

 iii. Many chips on a wafer; dice into individual chips

 iv. Wires keep getting thinner

 v. Moore’s Law