
Performance Characterization of a Commercial Video
Streaming Service

Mojgan Ghasemi
Princeton University

Partha Kanuparthy
Yahoo Research∗

Ahmed Mansy
Yahoo

Theophilus Benson
Duke University

Jennifer Rexford
Princeton University

Abstract

Despite the growing popularity of video streaming over the Inter-
net, problems such as re-buffering and high startup latency continue
to plague users. In this paper, we present an end-to-end charac-
terization of Yahoo’s video streaming service, analyzing over 500
million video chunks downloaded over a two-week period. We
gain unique visibility into the causes of performance degradation
by instrumenting both the CDN server and the client player at the
chunk level, while also collecting frequent snapshots of TCP vari-
ables from the server network stack. We uncover a range of perfor-
mance issues, including an asynchronous disk-read timer and cache
misses at the server, high latency and latency variability in the net-
work, and buffering delays and dropped frames at the client. Look-
ing across chunks in the same session, or destined to the same IP
prefix, we see how some performance problems are relatively per-
sistent, depending on the video’s popularity, the distance between
the client and server, and the client’s operating system, browser,
and Flash runtime.

1. INTRODUCTION
Internet users watch hundreds of millions of videos per day [6],

and video streams represent more than 70% of North America’s
downstream traffic during peak hours [5]. A video streaming ses-
sion, however, may suffer from problems such as long startup de-
lay, re-buffering events, and low video quality that negatively im-
pact user experience and the content provider’s revenue [25, 14].
Content providers strive to improve performance through a variety
of optimizations, such as placing servers closer to clients, content
caching, effective peering and routing decisions, and splitting the
video session (i.e., the HTTP session carrying the video traffic) into
fixed-length chunks in multiple bitrates [9, 37, 20, 23, 32]. Multi-
ple bitrates enable adaptive bitrate algorithms (ABR) in the player
to adjust video quality to available resources.

Despite these optimizations, performance problems can arise any-
where along the end-to-end delivery path shown in Figure 1. The
poor performance can stem from a variety of root causes. For exam-
ple, the backend service may increase the chunk download latency

∗Work done at Yahoo. Current affiliation: Amazon Web Services.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC 2016, November 14-16, 2016, Santa Monica, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4526-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2987443.2987481

Backend

Service

CDN PoPsABR

Client

H
T

T
P

 G
E

T
Playback

buffer

Demux

Decode

Render

Screen

Figure 1: End-to-End video delivery components.

on a cache miss. The CDN servers can introduce high latency when
accessing data from disk. The network can introduce congestion or
random packet losses. The client’s download stack may handle data
inefficiently (e.g., slow copying of data from OS to the player via
the browser and Flash runtime) and the client’s rendering path may
drop frames due to high CPU load.

While ABR algorithms can adapt to performance problems (e.g.,
lower the bitrate when throughput is low), understanding the lo-

cation and root causes of performance problems enables content
providers to take the right corrective (or even proactive) actions,
such as directing client requests to different servers, adopting a
different cache-replacement algorithm, or further optimizing the
player software. In some cases, knowing the bottleneck can help
the content provider decide not to act, because the root cause is
beyond the provider’s control—for example, it lies in the client’s
browser, operating system, or access link. The content provider
could detect the existence of performance problems by collecting
Quality of Experience (QoE) metrics at the player, but this does
not go far enough to identify the underlying cause. In addition, the
buffer at the player can (temporarily) mask underlying performance
problems, leading to delays in detecting significant problems based
solely on QoE metrics.

Instead, we adopt a performance-driven approach for uncovering
performance problems. Collecting data at the client or the CDN
alone is not enough. Client-side measurements, while crucial for
uncovering problems in the download stack (e.g., a slow browser)
or rendering path (e.g., slow decoder), cannot isolate network and
provider-side bottlenecks. Moreover, a content provider cannot col-
lect OS-level logs or measure the network stack at the client; even
adding small extensions to the browsers or plugins would compli-
cate deployment. Server-side logging can fill in the gaps [38], with
care to ensure that the measurements are sufficiently lightweight in
production.

In this paper, we instrument the CDN servers and the video player
of a Web-scale commercial video streaming service, and join the
measurement data to construct an end-to-end view of session per-
formance. We measure per-chunk milestones at the player, which

Location Findings

CDN 1. Asynchronous disk reads increase server-side delay.
2. Cache misses increase CDN latency by order of magnitude.
3. Persistent cache-miss and slow reads for unpopular videos.
4. Higher server latency even on lightly loaded machines.

Network 1. Persistent delay due to physical distance or enterprise paths.
2. Higher latency variation for users in enterprise networks.
3. Packet losses early in a session have a bigger impact.
4. Bad performance caused more by throughput than latency.

Client 1. Buffering in client download stack can cause re-buffering.
2. First chunk of a session has higher download stack latency.
3. Less popular browsers drop more frames while rendering.
4. Avoiding frame drops needs min of 1.5 sec

sec
download rate.

5. Videos at lower bitrates have more dropped frames.

Table 1: Summary of key findings.

runs on top of Flash (e.g., the time to get the chunk’s first and last
bytes, and the number of dropped frames during rendering), and the
CDN server (e.g., server and backend latency), as well as kernel-
space TCP variables (e.g., congestion window and round-trip time)
from the server host. Direct measurement of the main system com-
ponents help us avoid relying on inference or tomography tech-
niques that would limit the accuracy; or requiring other source of
“ground truth” to label the data for machine learning [13]. In this
paper, we make the following contributions:

1. A large-scale instrumentation of both sides of the video deliv-
ery path in a commercial video streaming service over a two-week
period, studying more than 523 million chunks and 65 million on-
demand video sessions.

2. End-to-end instrumentation that allows us to characterize the
player, network path, and the CDN components of session perfor-
mance across multiple layers of the stack, per-chunk. We show
an example of how partial instrumentation (e.g., player-side alone)
would lead to incorrect conclusions about performance problems.
Such conclusions could cause the ABR algorithm to make wrong
decisions.

3. We characterize transient and persistent problems in the end-
to-end path that have not been studied before; in particular the
client’s download stack and rendering path, and show their impact
on QoE.

4. We offer a comprehensive characterization of performance
problems for Internet video, and our key findings are listed in Ta-
ble 1. Based on these findings, we offer insights for video content
providers and Internet providers to improve video QoE.

2. CHUNK PERFORMANCE MONITORING
Model. We model a video session as an ordered sequence of HTTP(S)1

requests and responses over a single TCP connection between the
player and the CDN server—after the player has been assigned to
a server. The session starts with the player requesting the manifest,
which contains a list of chunks in available bitrates (upon errors
and user events such as seeks, manifest is requested again). The
ABR algorithm — tuned and tested in the wild to balance between
low startup delay, low re-buffering rate, high quality and smooth-
ness — chooses a bitrate for each chunk to be requested from the
CDN server. The CDN service maintains a FIFO queue of arrived
requests and maintains a thread pool to serve the queue. The CDN
uses a multi-level distributed cache (between machines, and the
main memory and disk on each machine) to cache chunks with

1Both HTTP and HTTPS protocols are supported at Yahoo; for
simplicity, we use HTTP instead of HTTPS in the rest of the paper.

BackendOS CDN

T
im
e

DCDN

+DBE {} DBE

Wide-Area

Network

Backend

Connection

Cache Miss

Player

DFB

{DLB

{
Download

Stack

HTTP GET

{DDS

Figure 2: Time diagram of chunk delivery. Solid lines are in-

strumentation while dashed lines are estimates.

an LRU replacement policy. Upon a cache miss, the CDN server
makes a corresponding request to the backend service.

The client host includes two independent execution paths that
share host resources. The download path “moves” chunks from
the NIC to the player, by writing them to the playback buffer. The
rendering path reads from the playback buffer, de-muxes (audio
from video), decodes and renders the pixels on the screen—this
path could use either the GPU or the CPU. Note that there is a
stack below the player: the player executes on top of a Javascript
and Flash runtime, which in turn is run by the browser on top of the
OS.

2.1 Chunk Instrumentation
We collect chunk-level measurements because: (1) most deci-

sions affecting performance are taken per-chunk (e.g., caching at
the CDN, and bitrate selection at the player), although some metrics
are chosen once per session (e.g., the CDN server), (2) sub-chunk
measurements would increase CPU load on client, at the expense of
rendering performance (Section 4.4), and (3) client-side handling
of data within a chunk can vary across streaming technologies, and
is often neither visible nor controllable. For example, players im-
plemented on top of Flash use a progress event that delivers data to
the player, and the buffer size or frequency of this event may vary
across browsers or versions.

We capture the following milestones per chunk at the player and
the CDN service: (1) When the chunk’s HTTP GET request is sent,
(2) CDN latency in serving the chunk, in addition to backend la-
tency for cache misses, and (3) the time to download the first and
last bytes of the chunk. We denote the player-side first-byte delay

DFB and last-byte delay DLB . Figure 2 summarizes our notation.
We divide a chunk’s lifetime into the three phases: fetch, download,
and playout.

Fetch Phase. The fetch process starts with the player sending an
HTTP request to the CDN for a chunk at a specified bitrate until the
first byte arrives at the player. The byte transmission and delivery
traverse the host stack (player, Flash runtime, browser, userspace
to kernel space and the NIC)—contributing to the download stack

latency. If the content is cached at the CDN server, the first byte
is sent after a delay of DCDN (the cache lookup and load delay);
otherwise, the backend request for that chunk incurs an additional
delay of DBE . Note that the backend and delivery are always
pipelined. The first-byte delay DFB includes network round-trip
time (rtt0), CDN service latency, backend latency (if any), and
client download stack latency:

DFB = DCDN +DBE +DDS + rtt0 (1)

We measure DFB for each chunk at the player. At the CDN ser-
vice, we measure DCDN and its constituent parts: (1) Dwait: the
time the HTTP request waits in the queue until the request headers
are read by the server, (2) Dopen: after the request headers are read
until the server first attempts to open the file, regardless of cache
status, and (3) Dread: time to read the chunk’s first byte and write
it to the socket, including the delay to read from local disk or back-
end. The backend latency (DBE) is measured at the CDN service
and includes network delay. Characterizing backend service prob-
lems is out of scope for this work; we found that such problems are
relatively rare.

A key limitation of player-side instrumentation is that applica-
tion layer metrics capture the mix of download stack latency, net-
work latency, and server-side latency. To isolate network perfor-
mance from end-host performance, we measure the end-to-end net-
work path at the CDN host kernel’s TCP stack. Since kernel-space
latencies are relatively very low, it is reasonable to consider this
view as representative of the network path performance. Specif-
ically, the CDN service snapshots the Linux kernel’s tcp_info
structure for the player TCP connection (along with context of the
chunk being served). The structure includes TCP state such as
smoothed RTT, RTT variability, retransmission counts, and sender
congestion window. We sample the path performance periodically
every 500ms2; this allows us to observe changes in path perfor-
mance.

Download Phase. The download phase is the window between
arrivals of the first and the last bytes of the chunk at the player,
i.e., the last-byte delay, DLB . It depends on the chunk size, which
depends on chunk bitrate and duration. To identify chunks suffer-
ing from low throughput, on the client side we record the requested
bitrate and the last-byte delay. To understand the network path per-
formance and its impact on TCP, we snapshot TCP variables from
the CDN host kernel at least once per-chunk (as described above).

Playout Phase. As a chunk is downloaded, it is added to the play-
back buffer. If the playback buffer does not contain enough data,
the player pauses and waits for sufficient data; in case of an already
playing video, this causes a rebuffering event. We instrument the
player to measure the number (bufcount) and duration of rebuffer-
ing events (bufdur) per-chunk played.

Each chunk must be decoded and rendered at the client. In the
absence of hardware rendering (i.e., GPU), chunk frames are de-
coded and rendered by the CPU, which makes video quality sen-
sitive to CPU utilization. A slow rendering process drops frames
to keep up with the encoded frame rate. To characterize render-
ing path problems, we instrument the Flash player to collect the
average rendered frame rate per chunk (avgfr) and the number of
dropped frames per chunk (dropfr). A low rendering rate, how-
ever, is not always indicative of bad performance; for example,
when the player is in a hidden tab or a minimized window, video
frames are dropped to reduce CPU load [14]. To identify these sce-
narios, the player collects a variable (vis) that records if the player
is visible when the chunk is displayed. Table 2 summarizes the
metrics collected for each chunk at the player and CDN.

2.2 Per-session Instrumentation
In addition to per-chunk milestones, we collect session metadata;

see Table 3. A key to end-to-end analysis is to trace session per-
formance from the player through the CDN (at the granularity of
chunks). We implement tracing by using a globally unique session
ID and per-session chunk IDs.

2The frequency is chosen to keep overhead low in production.

Location Statistics

Player (Delivery) sessionID, chunkID, DFB , DLB , bitrate

Player (Rendering) bufdur , bufcount, vis, avgfr, dropfr

CDN (App layer) sessionID, chunkID, DCDN (wait, open, and
read), DBE , cache status, chunk size

CDN (TCP layer) CWND, SRTT, SRTTVAR, retx, MSS

Table 2: Per-chunk instrumentation at player and CDN.

Location Statistics

Player sessionID, user IP, user agent, video length

CDN sessionID, user IP, user agent, CDN PoP, CDN
server, AS, ISP, connection type, location

Table 3: Per-session instrumentation at player and CDN.

3. MEASUREMENT DATASET
We study 65 million VoD sessions (523m chunks) with Yahoo,

collected over a period of 18 days in September 2015. These ses-
sions were served by a random subset of 85 CDN servers across the
US. Our dataset predominantly consists of clients in North America
(over 93%).

Figure 3(a) shows the cumulative distribution of the length of
the videos. All chunks in our dataset contain six seconds of video
(except, perhaps, the last chunk).

We focus on desktop and laptop sessions with Flash-based play-
ers. The browser distribution is as follows: 43% Chrome, 37%
Firefox, 13% Internet Explorer, 6% Safari, and about 2% other
browsers; the two major OS distributions in the data are Windows
(88.5% of sessions) and OS X (9.38%). We do not consider cellu-
lar users in this paper since the presence of ISP proxies affects the
accuracy of our findings.

The video viewership and popularity of videos is heavily skewed
towards popular content; see Figure 3(b). We find that top 10% of
most popular videos receive about 66% of all playbacks.
Data preprocessing to filter proxies. A possible pitfall in our
analysis is the existence of enterprise or ISP HTTP proxies [35],
since the CDN server’s TCP connection would terminate at the
proxy, leading to network measurements (e.g., RTT) reflecting the
server-proxy path instead of the client. We filter sessions using a
proxy when: (i) we see different client IP addresses or user agents [34]
between HTTP requests and client-side beacons3, or (ii) the client
IP address appears in a very large number of sessions (e.g., more
more minutes of video per day than there are minutes in a day).
After filtering proxies, our dataset consists of 77% of sessions.
Ethical considerations: Our instrumentation methodology is based
on logs/metrics about the traffic, without looking at packet pay-
load or video content. For privacy reasons, we do not track users
(through logging) hence we cannot study access patterns of individ-
ual users. Our analysis uses client IP addresses internally to iden-
tify proxies and perform coarse-grained geo-location; after that, we
use opaque session IDs to study the dataset.

4. CHARACTERIZING PERFORMANCE
In this section, we characterize the performance of each compo-

nent of the end-to-end path, and show the impact on QoE. Prior
work has shown that important stream-related factors affect the
QoE: startup delay, rebuffering ratio, video quality (average bi-

3A beacon is a message sent back from the client to the analytic
servers, carrying information.

Latency Description

DFB Time to fetch the first byte

DLB Time to download the chunk (first to last byte)

DCDN CDN latency (= Dwait +Dopen +Dread)

DBE Backend latency in cache miss

DDS Client’s download stack latency

rtt0 Network round-trip time during the first-byte ex-
change

Table 4: Latency notations and their description

101 102 103 104

Video duration (sec)

10-3

10-2

10-1

100

C
C

D
F

(a) CCDF of video lengths
(one month)

10-4 10-3 10-2 10-1 100

Normalized Rank

10-6
10-5
10-4
10-3
10-2
10-1

N
or

m
al

iz
ed

 F
re

qu
en

cy

(b) Rank vs. popularity (one
day)

Figure 3: Length and popularity of videos in the dataset.

trate), and the rendering quality [14, 37]. They have developed
models for estimating QoE scores of videos by assigning weights
to each of these stream metrics to estimate a user behavior metric
such as abandonment rate.

We favor looking at the impact on individual QoE factors instead
of a single QoE score to assess the significance of performance
problems. This is primarily because of the impact of content on
user behavior (and hence, QoE). First, user behavior may be differ-
ent for long-duration content such as Netflix videos (e.g., users may
be more patient with a longer startup delay) than short-duration
content (our case). Second, the type of content being viewed im-
pacts user behavior (and hence the weights of QoE factors). For
example, the startup delay for a news video (e.g., “breaking news”)
may be more important to users than the stream quality; while for
sports videos, the quality may be very important. Given the variety
of Yahoo videos, we cannot use a one-size-fits-all set of weights
for a QoE model. Moreover, the results would not generalize to
all Internet videos. Instead, we show the impact of each problem
directly on the QoE factors.

4.1 Server-side Performance Problems
Yahoo uses the Apache Traffic Server (ATS), a popular caching

proxy server [2], to serve HTTP requests. The traffic engineering
system maps clients to CDN nodes using a function of geography,
latency, load, cache likelihood, etc. In other words, the system tries
to route clients to a server that is likely to have a hot cache. The
server first checks the main memory cache, then tries the disk, and
finally sends a request to a backend server if needed.

Server latencies are relatively low, since the CDN and the back-
end are well-provisioned. About 5% of sessions, however, expe-
rience a QoE problem due to the server, and the problems can be
persistent as we show below. Figure 4 shows the impact of the
server-side latency for the first chunk on the startup delay (time to
play) at the player.

0 100 200 300 400 500 600
Server latency (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

St
ar

tu
p

tim
e

(s
ec

)

average
median

Figure 4: Impact of server latency on QoE (startup time), error

bars show the interquartile range (IQR).

10-1 100 101 102 103

Server-side latency breakdown (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

wait

open

read

total¡hit
total¡miss

Figure 5: CDN latency breakdown across all chunks.

1. Asynchronous disk read timer and cache misses cause high

server latency. Figure 5 shows the distribution of each component
of CDN latency across chunks; it also includes the distribution of
total server latency for chunks broken by cache hit and miss. Most
of the chunks have a negligible waiting delay (Dwait < 1ms) and
open delay. However, the Dread distribution has two nearly iden-
tical parts, separated by about 10ms. The root cause is that ATS
executes an asynchronous read to read the requested files in the
background. When the first attempt in opening the cache is not
immediately returned (due to content not being in memory), ATS
retries to open the file (either from the disk or from backend ser-
vice) using a 10ms timer [4].

On a cache miss, the backend latency significantly affects the
serving latency according to Figure 5. The median server latency
among chunks experiencing a cache hit is 2ms, while the median
server latency for cache misses is 40 times higher at 80ms. The av-
erage and 95th percentile of server latency in case of cache misses
increases tenfold. In addition, cache misses are the main contribu-
tor when server latency has a higher contribution to DFB than the
network RTT: for 95% of chunks, network latency is higher than
server latency; however, among the remaining 5%, the cache miss
ratio is 40%, compared to an average cache miss rate of 2% across
session chunks.
Take-away: Cache misses impact serving latency, and hence QoE
(e.g., startup time) significantly. An interesting direction to explore
is to alter the LRU cache eviction policy to offer better cache hit
rates. For example, policies for popular-heavy workloads, such as
GD-size or perfect-LFU [11].

0 2k 4k 6k
Rank¸x

0

5

10

15

20

25
M

is
s p

er
ce

nt
ag

e
(%

)

0 2k 4k 6k
Rank¸x

5

10

15

20

25

30

M
ed

ia
n

se
rv

er
 d

el
ay

 (m
s)

Figure 6: Performance vs popularity: (a) miss rate vs rank, (b)

CDN latency (excluding cache misses) vs rank.

2. Less popular videos have persistent high cache miss rate and

high latency. We observed that a small fraction of sessions expe-
rience performance problems that are persistent. Once a session
has a cache miss on one chunk, the chance of further cache misses
increases significantly; the mean cache miss ratio among sessions
with at least one cache miss is 60% (median of 67%). Also, once
a session has at least one chunk with a high latency (> 10ms),
the chance of future read delays increases; the mean ratio of high-
latency chunks in sessions with at least one such chunk is 60%
(median of 60%).

One possible cause for persistent latency, even when the cache
hit ratio is high, is a highly loaded server that causes high serv-
ing latency; however, our analysis shows that server latency is not
correlated with load4. This is because the CDN servers are well
provisioned to handle the load.

Instead, the unpopularity of the content is a major cause of the
persistent server-side problems. For less popular videos, the chunks
often need to come from disk, or worse yet, the backend server.
Figure 6(a) shows the cache miss percentage versus video rank
(most popular video is ranked first) using data from one day. The
cache miss ratio drastically increases for unpopular videos. Even
on a cache hit, unpopular videos experience higher server delay, as
shown in Figure 6(b). The figure shows mean server latency af-
ter removing cache misses (i.e., no backend communication). The
unpopular content generally experiences a higher latency due to
higher read (seek) latency from disk.
Take-away. The persistence of cache misses could be addressed by
pre-fetching the subsequent chunks of a video session after the first
miss. Pre-fetching of subsequent chunks would particularly help
with unpopular videos since backend latency makes up a significant
part of their overall latency and could be avoided.

When an object cannot be served from local cache, the request
will be sent to the backend server. For a popular object, many con-
current requests may overwhelm the backend service; thus, the ATS
retry timer is used to reduce the load on the backend servers; the
timer introduces extra delay for cases where the content is available
on local disk.

3. Load vs. performance due to cache-focused client mapping.

We have observed that more heavily loaded servers offer lower

CDN latency (note that CDN latency does not include the network
latency, but only the time a server takes to start serving the file).
This result was initially surprising since we expect busier servers
to have worse performance; however, this can be explained by the
cache-focused mapping CDN feature: As a result of cache-based

4We estimated load as of number of parallel HTTP requests, ses-
sions, or bytes served per second.

0 100 200 300 400 500 600
srtt of first chunk (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

St
ar

tu
p

tim
e

(s
ec

)

average
median

Figure 7: Average and median startup delay vs. network la-

tency, error bars show the interquartile range (IQR).

assignment of clients to CDN servers, servers with less popular
content have more chunks with either higher read latency as the
content is not fresh in memory (and the ATS retry-timer), or worse
yet, need to be requested from backend due to cache-misses.

While unpopular content leads to lower performance, because of
lower demand it also produces fewer requests, hence servers that
serve less popular content seem to have worse performance at a
lower load than the servers with a higher load.
Take-away. An interesting direction to achieve better utilization
of servers and load balancing is to actively partition popular con-
tent among servers (on top of cache-focused routing). For exam-
ple, given that the top 10% of videos make up 66% of requests,
distributing only the top 10% of popular videos across servers can
balance the load.

4.2 Network Performance Problems
Network problems can manifest themselves in the form of in-

creased packet loss, reordering, high latency, high variation in la-
tency, and low throughput. Each can be persistent (e.g., far away
clients from a server have persistent high latency) or transient (e.g.,
spike in latency caused by congestion). In this section, we charac-
terize these problems.

Distinguishing between a transient and a persistent problem mat-
ters because although a good ABR may adapt to temporary prob-
lems (e.g., by lowering bitrate), it cannot avoid bad quality caused
by persistent problems (e.g., when a peering point is heavily con-
gested, even the lowest bitrate may see re-buffering). Instead, per-
sistent problems require corrective actions taken by the video provider
(e.g., placement of new CDN PoPs) or ISPs (e.g., additional peer-
ing).

We characterize the impact of loss and latency on QoE. To char-
acterize long-term problems, we aggregate sessions into /24 IP pre-
fixes since most allocated blocks and BGP prefixes are /24 pre-
fixes [29, 16]. Figure 7 shows the effect of network latency during
the first chunk on video QoE, specifically, startup delay, across ses-
sions. High latency in a session could be caused by a persistently
high baseline (i.e., high srttmin)5, or variation in latency as a result
of transient problems (i.e., high variation, σsrtt). Figure 8 shows
the distribution of both of these metrics across sessions. We see
that both of these problems exist among sessions; we characterize
each of these next.

5Note that TCP’s estimate of RTT, SRTT, is an EWMA average;
hence srttmin is higher than the minimum RTT seen by TCP. The
bias of this estimator, however, is not expected to be significant for
our study since it is averaged.

100 101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

¾srtt
srttmin

Figure 8: CDF of baseline (srttmin) and variation in latency

(σsrtt) among sessions.

1. Persistent high latency caused by distance or enterprise path

problems. In Figure 8, we see that some sessions have a high
minimum RTT. To analyze the minimum latency, it is important
to note that the SRTT samples are taken after 500ms from the be-
ginning of the chunk’s transmission; hence, if a chunk has self-
loading [21], the SRTT sample may reflect the additional queuing
delay and not just the baseline latency. To filter out chunks whose
SRTT has grown while downloading, we use an estimate of the ini-
tial network round-trip time (rtt0) per-chunk. Equation 1 shows
that DFB − (DCDN + DBE) can be used as an upper-bound es-
timate of rtt0. We take the minimum of SRTT and rtt0 per-chunk
as the baseline sample. Next, to find the minimum RTT in a session
or prefix, we take the minimum among all these per-chunk baseline
samples in the session or prefix.

In order to find the underlying cause of persistently high latency,
we aggregate sessions into /24 client prefixes. The aggregation
overcomes client last-mile problems, which may increase the la-
tency for one session, but are not persistent problems. A prefix has
more RTT samples than a session; hence, congestion is less likely
to inflate all samples.

We focus our analysis on prefixes in the 90th percentile latency,
where srttmin > 100ms; which is a high latency for cable/broadband
connections (note that our CDN and client footprint is largely within
North America). To ensure that a temporary congestion or rout-
ing change has not affected samples of a prefix, and to understand
the persistent problems in poor prefixes, we repeat this analysis
every day in our dataset and calculate the recurrence frequency,
#days prefix in tail

#days
. We take the top 10% of prefixes with highest re-

occurrence frequency as prefixes with a persistent latency problem.
This set includes 57k prefixes.

In these 57k prefixes, 75% are located outside the US and are
spread across 96 different countries. These non-US clients are often
limited by geographical distance and propagation delay. However,
among the 25% of prefixes located in the US, the majority are close

to CDN nodes. Since IP geolocation packages may not be accurate
outside US, in particular favoring the US with 45% of entries [29],
we focus our geo-specific analysis to US clients. Figure 9 shows
the relationship between the srttmin and geographical distance of
these prefixes in the US. If a prefix is spread over several cities, we
use the average of their distances to the CDN server. Among high-
latency prefixes inside the US within a 4km distance, only about
10% are served by residential ISPs, while the remaining 90% of
prefixes originate from corporations and private enterprises.
Take-away: Finding clients that suffer from persistent high latency
due to geographical distance helps video content providers in bet-
ter placement of new CDN servers and traffic engineering. It is

0 1000 2000 3000 4000
Mean distance of prefix from CDN servers (km)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 9: Mean distance (km) of US prefixes in the tail latency

from CDN servers.

0 2 4 6 8 10
CV(srtt) among sessions of each (prefix, CDN PoP)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Figure 10: CDF of path latency variation: CV of latency per

path, a path is defined by a (prefix, PoP) pair.

equally important to look at close-by clients suffering from high
latency to (1) avoid over-provisioning servers in those geographics
and wasting resources, and, (2) identify the IP prefixes with known
persistent problems and adjust the ABR algorithm accordingly, for
example, to start the streaming with a more conservative initial bi-
trate.

2. Residential networks have lower latency variation than en-

terprises. To measure RTT variation, we calculate the coefficient
of variation (CV) of SRTT in each session, which is defined as
the standard deviation over the mean of SRTT. Sessions with low
variability have CV < 1 and sessions with high SRTT variabil-
ity have CV > 1. For each ISP and organization, we measure
the ratio of sessions with CV > 1 to all sessions. We limit the
result to ISPs/organizations that have least 50 video streaming ses-
sions to provide enough evidence of persistence. Table 5 shows
the top ISPs/organizations with highest ratio. Enterprises networks
make up most of the list. To compare this with residential ISPs,
we analyzed five major residential ISPs and found that about 1% of
sessions have CV > 1.

In addition to per-session variation in latency, we characterize
the variation of latency in prefixes as shown in Figure 10. We use
the average srtt of each session as the sample latency. To find
the coefficient of variance among all source-destination paths, we
group sessions based on their prefix and the CDN PoP. We see that
40% of (prefix, PoP) pairs belong to paths with high latency varia-
tion (CV > 1).
Take-away: Recognizing which clients are more likely to suffer
from latency variation is valuable for content providers because it
helps them make informed decisions about QoE. In particular, the
player bitrate adaptation and CDN traffic engineering algorithms
can use this information to optimize streaming quality under high

isp/organization #sessions with CV > 1 #all sessions Percentage

Enterprise#1 30 69 43.4%

Enterprise#2 4,836 11,731 41.2%

Enterprise#3 1,634 4,084 40.0%

Enterprise#4 83 208 39.9%

Enterprise#5 81 203 39.9%

Table 5: ISP/Organizations with highest percentage of sessions

with CV (SRTT) > 1.

latency variation. For example, the player can make more conser-
vative bitrate choices, lower the inter-chunk wait time (i.e., request
chunks sooner), and increase the buffer size to deal with variability.

3. Earlier packet losses have higher impact on QoE. We use the
retransmission count to study the effect of packet losses. A ma-
jority of the sessions (> 90%) have a retransmission rate of less
than 10%, with 40% of sessions experiencing no loss. While 10%
can severely impact TCP throughput, not every retransmission is
caused by an actual loss (e.g., due to early retransmit optimiza-
tions, underestimating RTO, etc.). Figure 11 shows the differences
between sessions with and without loss in three aspects: (a) num-
ber of chunks (are these sessions shorter?), (b) bitrate (similar qual-
ity?), and (c) re-buffering. We see that the session length and bitrate
distributions are almost similar between the two groups; however,
re-buffering difference is significant and sessions without loss have
better QoE.

While higher loss rates generally indicate higher re-buffering
(Figure 12), the loss rate of a TCP connection does not necessarily
correlate with the video QoE; the timing of the loss matters too.
Figure 13 shows two example sessions (case-1 and case-2) where
both sessions have 10 chunks with similar bitrates, cache status,
and SRTT distributions. Case-1 has a retransmission rate of 0.75%
compared to 22% in case-2; but it experienced dropped frames and
re-buffering despite the lower loss rate. As Figure 13 shows, the
majority of losses in case-1 happen in the first chunk, while case-
2 has no loss during the first four chunks, building up its buffer
to 29.8 seconds before a loss happens and successfully avoids re-
buffering.

Because the buffer can hide the effect of subsequent loss, we
believe that it is important to not only measure loss rate in video
sessions, but also the chunk ID that experiences loss. Loss dur-
ing earlier chunks has more impact on QoE because the playback
buffer would hold less data for earlier chunks. We expect losses
during the first chunk to have the highest effect on re-buffering.
Figure 14 shows two examples: (1) P (rebuf at chunk = X), which
is the percentage of chunks with that chunk ID seeing a re-buffering
event; and (2) P (rebuf at chunk = X|loss at chunk = X), which
is the same probability conditioned on occurrence of a loss during
the chunk. While occurrence of a loss in any chunk increases the
likelihood of a re-buffering event, the increase is more significant
for the first chunk.

We observe that losses are more likely to happen on the first
chunk: Figure 15 shows the average per-chunk retransmission rate.
The bursty nature of TCP losses towards the end of slow start [7]
could be the cause of higher loss rates during the first chunk, which
TCP avoids in subsequent chunks when transitioning into conges-
tion avoidance state.
Take-aways: Due to the existence of a buffer in video stream-
ing clients, the session loss rate does not necessarily correlate with
QoE. The temporal location of loss in the session matters as well:

0 5 10 15 20
#chunks

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

no loss
loss

(a) CDF of session length with and without loss

102 103 104

Avg bitrate (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

no loss
loss

(b) CDF of Average bitrate with and without loss

10-1 100 101 102

rebuffering rate (%)

0.00

0.01

0.02

0.03

0.04

0.05
C

C
D

F

no loss
loss

(c) CCDF (1-CDF) of Re-buffering rate with and
without loss

Figure 11: Differences in session length, quality, and re-

buffering with and without loss.

0 2 4 6 8 10
retransmission rate %

0.0

0.5

1.0

1.5

2.0

2.5

3.0

re
bu

ff
er

in
g

ra
te

 %

Figure 12: Rebuffering vs retransmission rate in sessions.

0 1 2 3 4 5 6 7 8 9
Chunk ID

0
5

10
15
20
25
30
35
40
45

L
os

s r
at

e
%

 in
 c

hu
nk case #1, rebuffering

case #2, no rebuffering

Figure 13: Example case for loss vs QoE.

0 5 10 15 20
chunk ID

0
1
2
3
4
5

%
 o

f c
hu

nk
s w

ith
 r

eb
uf

fe
ri

ng

P(rebuffering at chunk=X)
P(rebuffering at chunk=X| loss at chunk=X)

Figure 14: Re-buffering frequency per chunkID, Re-bufffering

frequency given loss per chunkID.

0 5 10 15 20
chunk ID

0
2
4
6
8

10

A
vg

 r
et

ra
ns

m
is

si
on

 r
at

e
(%

)

Figure 15: Average per-chunk retransmission rate.

earlier losses impact QoE more, with the first chunk having the
biggest impact.

Due to the bursty nature of packet losses in TCP slow start caused
by the exponential growth, the first chunk may have the highest per-
chunk retransmission rate. Prior work showed a possible solution
to work around a related issue using server-side pacing [19].

4. Throughput is a bigger problem than latency. To separate
chunks based on performance, we use the following intuition: the
playback buffer decreases when it takes longer to download a chunk
than there are seconds of video in the chunk. With τ as the chunk
duration, we tag chunks with bad performance when the following
score is less than one:

perfscore =
τ

DFB +DLB

(2)

We use DLB as a “measure” of throughput. Both latency (DFB)
and throughout (DLB) play a role in this score. We define the
latency share in performance by DFB

DFB+DLB

and the throughput

share by DLB

DFB+DLB

. We show that while the chunks with bad per-

formance generally have higher latency and lower throughput than
chunks with good performance, throughput is a more “dominant”
metric in terms of impact on the performance of the chunk. Fig-
ure 16(a) shows that chunks with good performance generally have
higher share of latency and lower share of throughput than chunks
with bad performance. Figure 16(b) shows the difference in ab-
solute values of DFB , and Figure 16(c) shows the difference in
absolute values of DLB .

While chunks with bad performance generally have higher first
and last byte delays, the difference in DFB is negligible compared
to that of DLB . We can see that most chunks with bad performance
are limited by throughout and have a higher throughput share.
Take-away: Our findings could be good news for ISPs because
throughput can be an easier problem to fix (e.g., establish more
peering points) than latency [3].

4.3 Client’s Download Stack
1. Some chunks have significant download stack latency. Video
packets traversing the client’s download stack (OS, browser, and
the Flash plugin) may be delayed due to buffered delivery. In the
extreme case, all the chunk bytes could be buffered and delivered
late and all at once to the player6, resulting in a significant increase
in DFB . Since the buffered data is delivered at once or in short time
windows, the instantaneous throughput (TPinst = chunk size

DLB

) will

be much higher at the player than the arrival rate of the chunk bytes
from the network. We use TCP variables to estimate the download
throughout per-chunk:

throughput = MSS ×
CWND

SRTT
(3)

To detect chunks with this issue, we detect outliers using stan-
dard deviation: when a chunk is buffered in the download stack, its
DFB is much higher than that of the other chunks — more than
2 · σ greater than the mean — despite other similar latency metrics
(i.e., network and server-side latency are within one σ of the mean).
Also, its TPinst is much higher — more than 2 · σ greater than the
mean — due to the buffered data being delivered in a shorter time,
while the estimated throughput from server side (using CWND and
SRTT) does not explain the increase in throughput. Equations 4
summarize the detection conditions:

DFBi
> µDFB

+ 2 · σDFB

TPinsti > µTPinst
+ 2 · σTPinst

SRTT,Dserver, CWND < µ+ σ

(4)

Figure 17 shows an example session that experiences the down-
load stack problem (DS) taken from our dataset; our algorithm de-
tected chunk 7 with much higher DFB and TPinst than the mean.
Figure 17(a) shows DFB of chunks and its constituents parts. We
see that the increase in chunk 7’s DFB is not caused by a latency
increase in backend, CDN, or network RTT. Figure 17(b) shows
that this chunk also has an abnormally high throughput that seems
impossible based on the estimated network throughput (Equation 3)
at the server-side. The presence of both observations in the same
chunk suggests that the chunk was buffered inside the client’s stack

6Note that the delay is not caused by a full playback buffer, since
the player will not request a new chunk when the buffer is full.

0.0 0.2 0.4 0.6 0.8 1.0
Latency share

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

perfscore>1

perfscore<1

(a)

101 102 103 104

First-byte latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

perfscore>1

perfscore<1

(b)

101 102 103 104 105

Last-byte latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

perfscore>1

perfscore<1

(c)

Figure 16: Latency vs throughput: (a) Latency share (
DFB

DFB+DLB

), (b) DFB , and (c) DLB vs performance score.

0 7 14 21
Chunk ID

0
500

1000
1500
2000
2500
3000
3500
4000

L
at

en
cy

 (m
s)

srtt
server
first-byte delay

(a) First-byte delay and its constituents in the session

0 7 14 21
Chunk ID

0

20

40

60

80

100

T
P

(M
bp

s)

connection TP
download TP

(b) Network throughput vs instantaneous download
throughput of the chunk

Figure 17: A case study showing the effects of client download

stack (chunk#7).

and delivered late to the player. The buffered data was delivered al-
most instantaneously, since it mainly involves a kernel to userspace
copy.

We have detected 1.7m chunks (0.32% of all chunks) using this
method, demonstrating how often the client’s download stack can
buffer the data and hurt performance. About 1.6m video sessions
have at least one such chunk (3.1% of sessions).
Take-aways: The download stack problem is an example where
looking at one-side of measurements (CDN or client) alone would
lead to wrong conclusions, and where both sides may blame the

network. It is only with end-to-end instrumentation that this prob-
lem can be localized correctly. Failure in correctly recognizing
such an effect on latency may lead to the following problems:

Over-shooting: Some ABR algorithms use player-level through-
put (i.e., the instantanous throughput) in the bitrate selection pro-
cess (e.g., a moving average of previous N chunks’ throughput).
Buffered delivery can lead to overestimation of end-to-end TCP
throughput.

Under-shooting: If the ABR algorithms are either latency-sensitive,
or use the average throughput (as opposed to the instantaneous
throughput), the affected chunks may cause underestimation of the
connection’s throughput.

Incorrect actions: When the TCP throughput is low, content providers
may initiate a corrective action, such as re-routing the client. If the
download stack latency is not diagnosed, clients may be falsely re-
routed.

While designing ABR algorithms that rely on throughput or la-
tency measurements, using server-side data (CWND and SRTT)
enables the player to estimate the state of the network more accu-
rately than client-side measurements alone. This could be done by
the CDN in an HTTP header with the next chunk. When it is not
possible to incorporate server-side measurements, the current ABR
algorithms that rely on client-side measurements should detect and
exclude outliers in their throughput/latency input.

2. Persistent download-stack problems. The underlying assump-
tion in the above method is that the majority of chunks will not
be buffered by download stack, hence we can detect the outlier

chunks. However, when a persistent problem in client’s download
stack affects all or most chunks, this method cannot detect the prob-
lem. If we could directly observe the network RTT, rtt0, we can es-
timate DDS using Equation 1 per-chunk. The current vanilla Linux
kernel does not expose individual RTT samples via the tcp_info
structure, and kernel changes or collecting packet traces may be in-
feasible in production settings.

To work around this limitation, we use a conservative estimate
of rtt0 as the TCP retransmission timer (RTO)7. RTO is how long
the sender waits for a packet’s acknowledgment before deciding it
is lost; hence, RTO can be considered as a conservative estimate of

7RTO = 200ms+SRTT +4×SRTTV AR, according to RFC
2988 [27].

Safari on

Linux

Safari on

Windows

Firefox on

Windows

Other on

Windows

Firefox on

Mac

mean DS(ms) 1041 1028 283 281 275

Table 6: OS/browser with highest DDS .

rtt0. We use RTO to estimate a lower bound of the client download
stack latency per-chunk:

DDS ≥ DFB −DCDN −DBE −RTO (5)

Using this method, we see that 17.6% of all chunks experience a
positive download stack latency. In 84% of these chunks, down-
load stack latency share in DFB is higher than network and server
latencies, making it the bottleneck in DFB . Table 6 shows the top
OS/browser combinations with highest persistent download stack
latency. We see that among major browsers, Safari on non-OS X
environments has the highest average download stack latency. In
the “other” category, we find that less-popular browsers on Win-
dows, in particular, Yandex and SeaMonkey, have high download
stack latencies.

Take-aways and QoE impact: Download stack problems are
worse for sessions with re-buffering: among sessions with no re-
buffering, the average DDS is less than 100ms. In sessions with up
to 10% re-buffering ratios, the average DDS grows up to 250ms,
and in sessions with more than 10% re-buffering ratios, the average
DDS is more than 500ms. Although the download stack latency
is not a frequent problem, it is important to note that when it is
an issue, it is often the major bottleneck in latency. Any adaptation
mechanisms at the client should detect the outliers to improve QoE.

It is important to know that some client setups (e.g., Yandex or
Safari on Windows) are more likely to have persistent download
stack problems. Recognizing the lasting effect of client’s machine
on QoE helps content providers avoid actions caused by wrong di-
agnosis (e.g., re-routing clients due to seemingly high network la-
tency when problem is in download stack).

3. First chunks have higher download stack latency. We find
that the distribution of DFB in first chunks is higher than other
chunks: the median DFB among first chunks is 300ms higher than
other chunks. Using packet traces and developer tools on browsers,
we confirmed that this effect is not visible in OS or browser times-
tamps. We believe that the difference is due to higher download
stack latency of first chunk. To test our hypothesis, we select a set
of performance-equivalent chunks with the following conditions:
(1) no packet loss, (2) CWND > ICWND, (3) no queuing delay
and similar SRTT (we use 60ms < SRTT < 65ms for presenta-
tion), and (4) DCDN < 5ms, and cache-hit chunks.

Figure 18 shows the distribution of DFB among the equivalent
set for first versus other chunks. We see that despite similar perfor-
mance conditions, first chunks experience higher DFB . The root
cause appears to be the processing time spent in initialization of
Flash events and data path setup (using the progressEvent in Flash)
at the player, which can increase DFB of first chunk.8

Take-away: First chunks experience a higher latency than other
chunks. Video providers could eliminate other sources of perfor-
mance problems at startup and reduce the startup delay by methods
such as caching the first chunk of video titles [30], or by assigning
higher cache priorities for first chunks.

4.4 Client’s Rendering Stack
8We can only see Flash as a blackbox, hence, we cannot confirm
this. However, a similar issue about ProgressEvent has been re-
ported [1].

101 102 103 104

D_FB (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

first
other

Figure 18: DFB (ms) of first vs other chunks in equivalent per-

formance conditions.

1. Avoiding dropped frames requires at least 1.5 sec
sec

download

rate. In a typical video session, video chunks include multiplexed
and encoded audio and video. They need to be de-multiplexed, de-
coded, and rendered on the client’s machine, which takes process-
ing time. Figure 19 shows the fraction of dropped frames versus
average download rate of chunks. We define the average download
rate of a chunk as video length (in seconds) over total download
time (τ

DFB+DLB

). A download rate of 1 sec
sec

is barely enough: after

receiving the frames, more processing is needed to decode frames
for rendering. Increasing the download rate to 1.5 sec

sec
enhances the

framerate; however, increasing the rate beyond this does not im-
prove the framerate.

To see if this observation can explain the rendering quality, we
look at the framerate as a function of chunk download rate: 85.5%
of chunks have low framerate (> 30% drop) when the download
rate is below 1.5 sec

sec
and good framerate when download rate is at

least 1.5 sec
sec

. About 5.7% of chunks have low rates but good ren-
dering, which can be explained by the buffered video frames that
hide the effect of low rates. Finally, 6.9% of chunks have low fram-
erate despite a minimum download rate of 1.5 sec

sec
, not confirming

the hypothesis. However, this could be explained as follows: First,
the average download rate does not reflect instantaneous through-
put. In particular, earlier chunks are more sensitive to changes in
throughput, since fewer frames are buffered at the player. Second,
when the CPU on the client machine is overloaded, software ren-
dering can be inefficient irrespective of the chunk arrival rate.

Figure 20 shows a simple controlled experiment, where a player
is running in the Firefox browser on OS X with eight CPU cores,
connected to the server using a 1Gpbs Ethernet link. The first bar
represents the per-chunk dropped rate while using GPU decoding
and rendering. Next, we turned off hardware rendering; we see
increase in frame drop rate with background processes using CPU
cores.

2. Higher bitrates have better rendered framerate. Higher bi-
trates contain more data per frame, thus imposing a higher load on
the CPU for decoding and rendering in time. We expect chunks
with higher bitrates to have more dropped frames as a result. We
did not observe this in our data. However, we observed the fol-
lowing trends in the data: (1) higher bitrates are often requested in
connections with lower RTT variation: SRTTVAR across sessions
with bitrates higher than 1Mbps is 5ms lower than the rest. Less
variation may result in fewer frames delivered late. (2) higher bi-
trates are often requested in connections with lower retransmission
rate: the retransmission rate among sessions with bitrates higher

0 1 2 3 4 5
Download rate of chunk, secsec

0
5

10
15
20
25
30
35
40

%
 D

ro
pp

ed
 F

ra
m

es
average
median

Figure 19: %Dropped frames vs chunk download rate, first bar

represents hardware rendering.

<10% 100% 200% 300% 400% 500% 600% 700% 800%
0

2

4

6

8

10

CPU utilization (8 cores)

D
ro

p
p

ed
 f

ra
m

es
 (

%
)

Figure 20: Dropped frames per CPU load in a controlled ex-

periment.

than 1Mbps is 1% lower than the rest. Lower packet loss rate re-
sults in less frames dropped or arrived late.

3. Less popular browsers have low rendering quality. If we limit
our analysis to chunks with good performance (rate > 1.5 sec

sec
)

where the player is visible (i.e., vis = true), the rendering qual-
ity can still be bad due to inefficiencies in client’s rendering path.
Since we cannot measure the client host environment in production,
we only characterize the clients based on their OS and browser.

Figure 21 shows the fraction of chunks requested from browsers
on OS X and Windows platforms (each platform is normalized to
100%), as well as the average fraction of dropped frames among
chunks served by that browser. Browsers with internal Flash (e.g.,
Chrome) and native HLS support (Safari on OS X) outperform
other browsers (some of which may run Flash as a process, e.g.,
Firefox’s protected mode). Also, the unpopular browsers (grouped
as Other) have the lowest performance. We further break them
down as shown in Figure 22. We restrict to browsers that have
processed at least 500 chunks. Yandex, Vivaldi, Opera or Safari on
Windows have low rendered framerate compared to other browsers.
Take-aways: De-multiplexing, decoding and rendering video chunks
could be resource-heavy on the client machine. In absence of hard-
ware (GPU) rendering, the burden falls on CPU to process frames
efficiently; however, the resource demands from other applications
on the host can affect the rendering quality. We found that video
rendering requires processing time, and that a video arrival rate of
1.5 sec

sec
could be used as a rule-of-thumb for achieving good render-

ing quality. Similar to download stack problems, rendering quality
differs based on OS and browser. In particular, we found unpopular
browsers to have lower rendering quality.

5. DISCUSSION
Monitoring and diagnosis is a challenging problem for large-

scale content providers due to insufficient instrumentation or mea-

Chrome IE Firefox Edge Other Safari Chrome Firefox Other

Windows Mac

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

% chunks in platform
% dropped frames

Figure 21: Browser popularity and rendering quality in the two

major platforms: Windows vs Mac.

0 5 10 15 20 25 30 35 40
Average dropped % among chunks

Yandex, Windows

Vivaldi, Windows

Opera, Windows

Safari, Windows

Average in the rest

Figure 22: Dropped % of (browser, OS), rate ≥ 1.5 sec
sec

, vis =
True.

surement overhead limitations. In particular, (1) sub-chunk events
such as bursty losses will not be captured in per-chunk measure-
ments; capturing them will impact player’s performance, (2) SRTT
does not reflect the value of round-trip time at the time of mea-
surement, rather is a smoothed average; vanilla Linux kernels only
export SRTTs to userspace today. To work with this limitation, we
use methods discussed in Section 4.2, (3) the characterization of
the rendering path could improve by capturing the underlying re-
source utilization and environment (e.g., CPU load, existence of
GPU), and (4) in-network measurements help further localization.
For example, further characterization of network problems (e.g., is
bandwidth limited at the core or the edge?) would have been pos-
sible using active probes (e.g., traceroute or ping) or in-network
measurements from ISPs (e.g., link utilization). Some of these
measurements may not be feasible at Web-scale.

6. RELATED WORK

Video streaming characterization: There is a rich area of re-
lated work in characterizing video-streaming quality. [28] uses ISP
packet traces to characterize video while [36] uses CDN-side data
to study content and Live vs VoD access patterns. Client-side data
and a clustering approach is used in [22] to find critical problems
related to user’s ISP, CDN, or content provider. Popularity in user-
generated content video system has been characterized in [12].
Our work differs from previous work by collecting and joining
fine-grained per-chunk measurements from both sides and direct
instrumentation of the video delivery path, including the client’s
download stack and rendering path.

QoE models: Studies such as [14] have shown correlations be-
tween video quality metrics and user engagement. [25] shows the
impact of video quality on user behavior using quasi experiments.

Network data from commercial IPTV is used in [31] to learn per-
formance indicators for users QoE, where [8] uses in-network mea-
surements to estimate QoE for mobile users. We have used the prior
work done on QoE models to extract QoE metrics that matter more
to clients (e.g., the re-buffering and startup delay) to study the im-
pact of performance problems on them.

ABR algorithms: The bitrate adaptation algorithms have been
studied well, [15] studies the interactions between HTTP and TCP,
while [9] compares different algorithms in sustainability and adap-
tation. Different algorithms have been suggested to optimize video
quality, in particular [23, 32] offer rate-based adaptation algorithms,
where [20] suggests a buffer-based approach, and [37] aims to op-
timize quality using a hybrid model. Our work is complementary
to these works, because while an optimized ABR is necessary for
good streaming quality, we showed problems where a good ABR
algorithm is not enough and corrective actions from the content
provider are needed.

Optimizing video quality by CDN selection: Previous work sug-
gests different methods for CDN selection to optimize video qual-
ity, for example [33] studies policies and methods used for server
selection in Youtube, while [24] studies causes of inflated latency
for better CDN placement. Some studies [26, 18, 17] make the
case for centralized video control planes to dynamically optimize
the video delivery based on a global view while [10] makes the
case for federated and P2P CDNs based on content, regional, and
temporal shift in user behavior.

7. CONCLUSION
In this paper, we presented the first Web-scale end-to-end mea-

surement study of Internet video streaming to characterize prob-
lems located at a large content provider’s CDN, Internet, and the
client’s download and rendering paths. Instrumenting the end-to-
end path gives us a unique opportunity to look at multiple compo-
nents together during a session, at per-chunk granularity, and to dis-
cover transient and persistent problems that affect the video stream-
ing experience. We characterize several important characteristics
of video streaming services, including causes for persistent prob-
lems at CDN servers such as unpopularity, sources of persistent
high network latency, and persistent rendering problems caused by
browsers. We draw insights into the client’s download stack la-
tency (possible at scale only via end-to-end instrumentation); and
we showed that the download stack can impact the QoE and feed
incorrect information into the ABR algorithm. We discussed the
implications of our findings for content providers (e.g., pre-fetching
subsequent chunks), ISPs (establishing better peering points), and
the ABR logic (e.g., using apriori observations about client pre-
fixes).

Acknowledgments

This work benefited from a large number of engineers from the
Video Platforms Engineering group at Yahoo. We thank the group
for helping us with instrumentation and patiently answering many
of our questions (and hearing our performance optimization obser-
vations). Thanks to P.P.S. Narayan for supporting this project at
Yahoo. This work was in part supported by the National Science
Foundation grant CNS-1162112.

8. REFERENCES
[1] ActionScript 3.0 reference for the Adobe Flash.

http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/flash/net/FileReference.html.

[2] Apache Traffic Server. http://trafficserver.apache.org.

[3] It’s latency, stupid.
https://rescomp.stanford.edu/~cheshire/rants/Latency.html.

[4] Open read retry timer.
https://docs.trafficserver.apache.org/en/4.2.x/admin/
http-proxy-caching.en.html#open-read-retry-timeout.

[5] Sandvine: Global Internet phenomena report 2015. https:
//www.sandvine.com/trends/global-internet-phenomena/.

[6] Youtube statistics.
https://www.youtube.com/yt/press/statistics.html.

[7] AGGARWAL, A., SAVAGE, S., AND ANDERSON, T.
Understanding the performance of TCP pacing. In IEEE

INFOCOM (2000), pp. 1157–1165.

[8] AGGARWAL, V., HALEPOVIC, E., PANG, J.,
VENKATARAMAN, S., AND YAN, H. Prometheus: Toward
quality-of-experience estimation for mobile apps from
passive network measurements. In Workshop on Mobile

Computing Systems and Applications (2014), pp. 18:1–18:6.

[9] AKHSHABI, S., BEGEN, A. C., AND DOVROLIS, C. An
experimental evaluation of rate-adaptation algorithms in
adaptive streaming over HTTP. In ACM Conference on

Multimedia Systems (2011), pp. 157–168.

[10] BALACHANDRAN, A., SEKAR, V., AKELLA, A., AND

SESHAN, S. Analyzing the potential benefits of CDN
augmentation strategies for internet video workloads. In IMC

(2013), pp. 43–56.

[11] BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND

SHENKER, S. Web caching and Zipf-like distributions:
Evidence and implications. In IEEE INFOCOM (1999),
pp. 126–134.

[12] CHA, M., KWAK, H., RODRIGUEZ, P., AHN, Y.-Y., AND

MOON, S. I tube, you tube, everybody tubes: Analyzing the
world’s largest user generated content video system. In IMC

(2007), pp. 1–14.

[13] DIMOPOULOS, G., LEONTIADIS, I., BARLET-ROS, P.,
PAPAGIANNAKI, K., AND STEENKISTE, P. Identifying the
root cause of video streaming issues on mobile devices. In
CoNext (2015).

[14] DOBRIAN, F., SEKAR, V., AWAN, A., STOICA, I., JOSEPH,
D., GANJAM, A., ZHAN, J., AND ZHANG, H.
Understanding the impact of video quality on user
engagement. In ACM SIGCOMM (2011), pp. 362–373.

[15] ESTEBAN, J., BENNO, S. A., BECK, A., GUO, Y., HILT,
V., AND RIMAC, I. Interactions between HTTP adaptive
streaming and TCP. In Workshop on Network and Operating

System Support for Digital Audio and Video (2012),
pp. 21–26.

[16] FREEDMAN, M. J., VUTUKURU, M., FEAMSTER, N., AND

BALAKRISHNAN, H. Geographic locality of ip prefixes. In
IMC (2005), pp. 13–13.

[17] GANJAM, A., JIANG, J., LIU, X., SEKAR, V., SIDDIQI, F.,
STOICA, I., ZHAN, J., AND ZHANG, H. C3: Internet-scale
control plane for video quality optimization. In USENIX

NSDI (2015), pp. 131–144.

[18] GEORGOPOULOS, P., ELKHATIB, Y., BROADBENT, M.,
MU, M., AND RACE, N. Towards network-wide QoE
fairness using OpenFlow-assisted adaptive video streaming.
In ACM SIGCOMM Workshop on Future Human-centric

Multimedia Networking (2013), pp. 15–20.

[19] GHOBADI, M., CHENG, Y., JAIN, A., AND MATHIS, M.
Trickle: Rate limiting YouTube video streaming. In USENIX

Annual Technical Conference (2012), pp. 17–17.

[20] HUANG, T.-Y., JOHARI, R., MCKEOWN, N., TRUNNELL,
M., AND WATSON, M. A buffer-based approach to rate
adaptation: Evidence from a large video streaming service.
In ACM SIGCOMM (2014), pp. 187–198.

[21] JAIN, M., AND DOVROLIS, C. End-to-end available
bandwidth: Measurement methodology, dynamics, and
relation with TCP throughput. In ACM SIGCOMM (2002),
pp. 295–308.

[22] JIANG, J., SEKAR, V., STOICA, I., AND ZHANG, H.
Shedding light on the structure of internet video quality
problems in the wild. In CoNext (2013), pp. 357–368.

[23] JIANG, J., SEKAR, V., AND ZHANG, H. Improving fairness,
efficiency, and stability in HTTP-based adaptive video
streaming with FESTIVE. In CoNext (2012), pp. 97–108.

[24] KRISHNAN, R., MADHYASTHA, H. V., SRINIVASAN, S.,
JAIN, S., KRISHNAMURTHY, A., ANDERSON, T., AND

GAO, J. Moving beyond end-to-end path information to
optimize CDN performance. In IMC (2009), pp. 190–201.

[25] KRISHNAN, S. S., AND SITARAMAN, R. K. Video stream
quality impacts viewer behavior: Inferring causality using
quasi-experimental designs. In IMC (2012), pp. 211–224.

[26] LIU, X., DOBRIAN, F., MILNER, H., JIANG, J., SEKAR,
V., STOICA, I., AND ZHANG, H. A case for a coordinated
Internet video control plane. In ACM SIGCOMM (2012),
pp. 359–370.

[27] PAXSON, V., AND ALLMAN, M. Computing TCP’s
Retransmission Timer. RFC 2988 (Proposed Standard),
2000. Obsoleted by RFC 6298.

[28] PLISSONNEAU, L., AND BIERSACK, E. A longitudinal view
of HTTP video streaming performance. In Multimedia

Systems Conference (2012), pp. 203–214.

[29] POESE, I., UHLIG, S., KAAFAR, M. A., DONNET, B., AND

GUEYE, B. IP geolocation databases: Unreliable?
SIGCOMM Computer Communications Review, 2 (2011),
53–56.

[30] SEN, S., REXFORD, J., AND TOWSLEY, D. Proxy prefix
caching for multimedia streams. In IEEE INFOCOM (1999),
pp. 1310–1319.

[31] SONG, H. H., GE, Z., MAHIMKAR, A., WANG, J., YATES,
J., ZHANG, Y., BASSO, A., AND CHEN, M. Q-score:
Proactive service quality assessment in a large IPTV system.
In IMC (2011), pp. 195–208.

[32] TIAN, G., AND LIU, Y. Towards agile and smooth video
adaptation in dynamic HTTP streaming. In CoNext (2012),
pp. 109–120.

[33] TORRES, R., FINAMORE, A., KIM, J. R., MELLIA, M.,
MUNAFO, M. M., AND RAO, S. Dissecting video server
selection strategies in the YouTube CDN. In International

Conference on Distributed Computing Systems (2011),
pp. 248–257.

[34] WEAVER, N., KREIBICH, C., DAM, M., AND PAXSON, V.
Here be web proxies. In PAM (2014), pp. 183–192.

[35] XU, X., JIANG, Y., FLACH, T., KATZ-BASSETT, E.,
CHOFFNES, D., AND GOVINDAN, R. Investigating
Transparent Web Proxies in Cellular Networks. In Proc. of

PAM (2015).

[36] YIN, H., LIU, X., QIU, F., XIA, N., LIN, C., ZHANG, H.,
SEKAR, V., AND MIN, G. Inside the bird’s nest:
Measurements of large-scale live VoD from the 2008
olympics. In IMC (2009), pp. 442–455.

[37] YIN, X., JINDAL, A., SEKAR, V., AND SINOPOLI, B. A
control-theoretic approach for dynamic adaptive video
streaming over HTTP. In ACM SIGCOMM (2015),
pp. 325–338.

[38] YU, M., GREENBERG, A., MALTZ, D., REXFORD, J.,
YUAN, L., KANDULA, S., AND KIM, C. Profiling network
performance for multi-tier data center applications. In
USENIX NSDI (2011), pp. 57–70.

