
Measuring and Evaluating Large-Scale CDNs

Cheng Huang
Microsoft Research

Redmond, WA 98052

Angela Wang
Polytechnic Institute of NYU

Brooklyn, NY 11201

Jin Li
Microsoft Research

Redmond, WA 98052

Keith W. Ross
Polytechnic Institute of NYU

Brooklyn, NY 11201

ABSTRACT
CDNs play a critical and central part of today’s Internet in-
frastructure. In this paper we conduct extensive and thor-
ough measurements that accurately characterize the perfor-
mance of two large-scale commercial CDNs: Akamai and
Limelight. Our measurements include charting the CDNs
(locating all their content and DNS servers), assessing their
server availability, and quantifying their world-wide delay
performance. Our measurement techniques can be adopted
by CDN customers to independently evaluate the performance
of CDN vendors. It can also be used by a new CDN en-
trant to choose an appropriate CDN design and to locate its
servers. Based on the measurements, we shed light on two
radically different design philosophies for CDNs: the Aka-
mai design, which enters deep into ISPs; and the Limelight
design, which brings ISPs to home. We compare these two
CDNs with regards to the numbers of their content servers,
their internal DNS designs, the geographic locations of their
data centers, and their DNS and content server delays. Fur-
thermore, we study where Limelight can locate additional
servers to reap the greatest delay performance gains. As a
byproduct, we also evaluate Limelight’s use of IP anycast,
and gain insight into a large-scale IP anycast production sys-
tem.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement tech-
niques, Performance attributes.

General Terms
Measurement, Performance.

Keywords
Content Distribution Network, Delay performance, Open
recursive DNS server, Data center selection, IP anycast.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’08, October 20–22, 2008, Vouliagmeni, Greece.
Copyright 2008 ACM 978-1-60558-334-1/08/10 ...$5.00.

1. INTRODUCTION
A Content Distribution Network (CDN) deploys con-

tent servers in multiple locations, often over multiple
backbones and ISPs, and even in multiple POPs within
different ISPs. The servers cooperate with each other,
transparently moving content behind the scenes to opti-
mize the end user experience. When a client makes a re-
quest, the CDN generally chooses a server at a location
that is near the client, thereby optimizing the perceived
end-user experience. There are as many as 28 commer-
cial CDNs [2], including Akamai, AT&T, NTT Commu-
nication, Limelight, Mirror Image, Level 3, Verisign and
Internap. There are also a number of non-commercial
ones (e.g. [3, 4]).

The most traditional CDN services include distribut-
ing static Web pages and large file downloads, such as
software patches and upgrades. CDNs also provide ap-
plication acceleration, delivering dynamic content and
supporting e-commerce, back-end databases, SSL, and
Web 2.0 applications. CDNs are also assisting enter-
prise customers in providing rich Web applications with
context and location-aware services. Increasingly, CDNs
are marketing themselves as the solution for video dis-
tribution over the Internet. Leading CDN companies
such as Akamai and Limelight are now offering stream-
ing media delivery, distributing media for Major League
Baseball, Paramount Pictures, BBC [1], and so on. The
enormously popular user-generated video site, YouTube,
is currently distributed by the Limelight CDN. The
CDNs taken together, with tens of thousands of servers
deployed throughout the world serving a major fraction
of Internet traffic, now make up a critical and central
part of the Internet infrastructure.

The current design of CDNs broadly follows two dif-
ferent philosophies. One philosophy is to enter deep
into ISPs, by deploying content distribution servers in-
side ISP POPs. The idea is to get close to end users,
so as to improve user-perceived performance in terms
of both delay and throughput. Such a design results
in a large number of server clusters scattered around
the globe. Because of this highly distributed design,
the tasks of maintaining and managing the networks

become very challenging. It also involves sophisticated
algorithms to shuffle data among the servers across the
public Internet. A leading representative commercial
CDN of this type is the Akamai network.

The other design philosophy is to bring ISPs to home,
by building large content distribution centers at only a
few key locations and connecting these centers using pri-
vate high speed connections. Instead of getting inside
the ISP’s POPs, these CDNs typically place each distri-
bution center at a location that is simultaneously near
the POPs of many large ISPs (for example, within a few
miles of both AT&T and Verizon POPs in a major city).
Compared to the first design philosophy, such a design
typically results in lower maintenance and management
overhead, possibly at the expense of higher delay to end
users. A leading representative commercial CDN of this
type is Limelight.

Given the vast number of competing CDN companies,
and the radically different design approaches they are
taking, we would like to quantitatively evaluate the per-
formance of current CDN companies and their architec-
tures. Through extensive and thorough measurements,
the goal of the paper is to explore CDNs in depth, deter-
mine their delay performance, as well as compare and
contrast the radically different design philosophies of
CDNs. The contributions of this paper are as follows:

• Charting CDN Networks. A CDN’s infrastruc-
ture mainly consists of a content-server network and
a DNS server network. To evaluate the performance
of a CDN, it is first necessary to determine all of a
CDN’s content and DNS servers, and additionally un-
derstand the specific internal DNS design (for exam-
ple, whether DNS servers are organized in a hierarchy
and/or if IP anycast is employed). However, without
direct access to a large number of globally-distributed
clients, it is challenging to completely chart a CDN
network. In this paper, we leverage the DNS infras-
tructure to obtain more than a quarter million public
DNS servers as query vantage points. In addition,
we develop new techniques to compensate the inad-
equacy of DNS servers themselves. We exploit this
infrastructure to find all of a CDN’s content servers
and all of its DNS servers, and eventually obtain com-
plete coverage. We determine the IP addresses of
all ∼27,000 servers in the Akamai network and all
∼4,100 servers in the Limelight network (at the time
of our study). In addition, we find that Akamai op-
erates ∼6,000 DNS servers, while Limelight operates
∼3,900. To the best of our knowledge, this is the most
complete discovery of these two networks and the first
report on the scale of their large DNS infrastructure
(Sections 2, 3 and 4).

• Measuring CDN Delay Performance. In assess-
ing a CDN, it is necessary to accurately and compre-

hensively measure its delay performance. A CDN has
two major delay components: DNS resolution delay,
that is, the time for the CDN’s internal DNS system
to supply the client the address of the “best” CDN
content server; and the content-server delay, that is,
the round-trip time between client and selected CDN
server. Quantifying the delay performance of a CDN
at large scale requires the ability to either capture
traffic on the CDN’s servers or control a large num-
ber of globally distributed clients. A key discovery
made in this paper is that large-scale CDNs typically
employ a huge number of DNS servers that are co-
located with their content servers. This observation
enables us to modify the King [8] delay measurement
approach to carry out a global-scale delay analysis of
Akamai and Limelight. As a result, we discovered
that at the 95% percentile, the DNS resolution delay
of Limelight is 23% higher than Akamai (170ms vs.
138ms); and the content server delay of Limelight is
114% higher than Akamai (222ms vs. 103ms). It is
intuitive that Akamai has better delay performance
than Limelight, but we quantify the difference from
a large number of vantage points (Sections 6).

• CDN Availability. Using our knowledge of the IP
addresses of all the content servers, we also explore
the availability of the content servers and server clus-
ters for both Akamai and Limelight. Additionally we
provide statistics for server uptimes (Sections 5).

• Methodology for CDN Deployment. Employing
the charting and delay measurement methodologies
discussed, we show how a new entrant can choose
the location of its servers to optimize delay perfor-
mance. The idea is to consider each of the Aka-
mai content servers (which have been fully charted)
as potential candidate locations. A new entrant can
use this methodology to evaluate the performance of
a hypothetical deployment before even building its
network. An existing CDN vendor can also use the
methodology to refine its own deployment, by evalu-
ating the performance improvement that can be ob-
tained by deploying servers at additional locations.
Applying the methodology to Limelight, we conclude
that Limelight can reduce its delay performance to
within 10% of Akamai by deploying only 5 more data
centers. We also conclude that Limelight’s current
deployment is robust to failures, that is, with ideal
global traffic management, one data center failure will
minimally affect its delay performance. Even in the
highly unlikely case when there are up to 4 concurrent
data center failures, the worse delay performance is
only 28% more than normal (Sections 7).

• Evaluating IP Anycast. As a byproduct of chart-
ing CDN topologies, we have discovered that Lime-
light employs IP anycast for its DNS system. Mea-

Content Distribution Network

content server
(Seattle) content server

(New York)

M: client
(SEA) D: open recursive

DNS server (NYC)

DNS query to resolve a CDN hostname

content servers close to NYC

1 2

3

4

D queries CDN’s private DNS system2

CDN responds with close svrs to D3

Figure 1: Charting Content Distribution Net-
works

suring Limelight’s DNS resolution performance allows
us to evaluate an IP anycast production system that
is widely distributed (in 18 locations worldwide) and
has extensive network connectivity (peering with hun-
dreds of ISPs). We conclude that IP anycast is very
effective in the real-world – fewer than 10% of the
DNS queries are routed to servers more than 25ms
away from the nearest server (Sections 8).

2. CHARTING CONTENT DISTRIBUTION
NETWORKS

In this section we present a methodology for discov-
ering all content servers and DNS servers of a given
CDN. But before presenting the methodology, it will be
instructive to first review the basics of CDN.

2.1 Brief review of CDN basics
Many modern CDNs use “DNS magic” to connect

end users to nearby content servers. Here is a simple ex-
ample – an end user visiting http://www.bestbuy.com
resolves the hostname to an IP address by querying its
local DNS (LDNS) server. The LDNS then contacts the
authoritative DNS server of www.bestbuy.com, which
returns a CNAME a1105.b.akamai.net to the query of
www.bestbuy.com. The LDNS again queries the au-
thoritative DNS server of a1105.b.akamai.net, which even-
tually returns the IP addresses of an Akamai content
server hosting BestBuy’s content. (Modern CDNs nor-
mally return more than one IP addresses – usually two
– to allow client side load balancing.) Readers can refer
to the detailed illustration in [23].

It’s clear that a CDN maintains two different types of
servers: content servers, which serve content to clients
on the behalf of the CDN’s customers; and DNS servers,
which the CDN uses to supply the client with a nearby
content server. As pointed out by Su et al. [14], the
same physical machine may serve both as a content
server and a DNS server for a CDN.

2.2 Charting CDN Networks
Our CDN-charting methodology is based on the fol-

lowing two key observations: 1) depending on where a
LDNS originates the query, the CDN chooses a nearby
content server (and returns the IP address thereof); and

2) due to load balancing, for the same LDNS, CDNs
return different content servers to the same query over
time. Therefore, to chart a CDN network, conceptually,
we can take two steps:

1. First we determine all the CNAMEs that are used
by the CDN’s customers.

2. Second, we query a large number of LDNSs all over
the world, at different times of the day, for all of
the CNAMEs found in step 1. As illustrated in Fig-
ure 1, a client in Seattle (M) sends to a LDNS in New
York (D) a DNS query for a CDN CNAME. When D
resolves this CNAME, it will get results back from
CDN’s DNS servers. From the CDN’s perspective,
the request comes from D, so it returns a content
server close to D. Hence, M will get results back
from D with content servers close to New York, in-
stead of Seattle.

We now describe these two steps in detail.

2.2.1 Finding CDN CNAMEs

The first step is straightforward. To find all the
CNAMEs used by a particular CDN, we first gather
a large set of web hostnames. This can be done in a
number of different ways, including crawling a search
engine. In our experiments, we obtained over 16 mil-
lion web hostnames directly from Windows Live search
logs. For each such hostname, a simple DNS query tells
us whether it resolves to a CNAME or an IP address,
and whether the CNAME belongs to the target CDN
(e.g., to Akamai or to Limelight).

2.2.2 Locating vantage points

In order to have a full coverage of a CDN, it is desired
to locate a large number of widely distributed LDNSs.
In addition, these LDNSs need to be open to external
queries for DNS resolution – due to security concerns,
many LDNSs are configured to only perform DNS res-
olution on behalf of their internal users. Fortunately,
as pointed out by Gummadi et al. [8] and repeatedly
explored by others [10, 18], there are still a large num-
ber of open LDNSs, i.e., they will resolve DNS queries
for users from anywhere. In addition, such DNS reso-
lutions are usually recursive (involving several iterative
DNS queries from the LDNS, before eventually mapping
to IP addresses). Hence, we call these LDNSs open re-
cursive DNS servers.

Here, we start with two sets of source data to locate
open recursive DNS servers. The first set consists of
a log of clients from the MSN Video service. We ob-
tain over 7 million unique client IP addresses. Through
reverse DNS lookup, we find the authoritative name
servers for these clients. Then, trial DNS queries are
sent to test the openness of these authoritative name

…
...

…
...

…
...

…
...

...
...

...
...

...
...

central
controller

PlanetLab
nodes

open recursive
DNS servers (D)

CDN private
DNS servers

1 distribute task lists
to PL nodes

1

2 3

2 instrument Ds for
charting / measurement

3 uncontrolled in charting ;
controlled in measurement

Figure 2: Measurement Platform

servers. We record all those that respond. The sec-
ond set is the same ∼16M web hosts used in Step 1.
Again, we find the authoritative name servers for these
hostnames and record those responding to trial DNS
queries. The results are summarized in list below.

DNS Servers clients (7M) web hosts (16M)
authoritative 83,002 1,161,439
open recursive 26,453 440,054

It turns out that, in many cases, different DNS servers
map into same IP addresses, so we eventually obtain
282, 700 unique open recursive DNS servers after pro-
cessing the total (26, 453+440, 054) DNS servers. These
servers cover 121, 556 different /24 IP prefixes and are
distributed in 210 countries, as detailed in Table 1. Note
that our approach is very effective, as the two data sets
(especially the search log) give us an order of magnitude
more useful DNS servers than sampling IP prefixes, an
approach taken by previous work [18].

2.2.3 Measurement platform

The complete charting of the DNS involves a large
number of DNS queries, i.e., querying each of the CDN
CNAMEs (found in the first step) from all the open re-
cursive DNS servers (found in the second step). For in-
stance, if a CDN has a few thousand of unique CNAMEs
(which is indeed the case, as we will see later), even
choosing a small percentage of the vantage points (say
10%) can easily result in over 100 million DNS queries.
To speed up the charting process, reduce load on any
single query server, as well as avoid potential complaints
about DNS attacks, we have developed a distributed ex-
ecution platform, which splits the complete giant task
into many smaller jobs, spreads these jobs onto Plan-
etLab nodes and executes on the PlanetLab nodes in
parallel; see Figure 2. This way, we can keep a very
low load (thereby consuming very modest resources) on
each PL node and still complete one round of charting

Region # of countries # of ASes # of servers % of total

North America 33 4,875 121,491 42.97
Europe 45 5,278 82,004 29.01

Asia 52 1,863 63,481 22.45
South America 14 400 8,714 3.08

Oceania 16 381 5,042 1.78
Africa 50 207 1,545 0.55

Unknown - - 446 0.16

Total 210 12,219 282,723 100.00

Table 1: Coverage of Open Recursive DNS
Servers

quickly (e.g., a rough calculation shows that, with 300
PlanetLab nodes and 3 DNS queries per second from
each node, the entire task takes slightly more than one
day to complete.). Note that the same platform is also
used in delay measurement experiments, which are cov-
ered in a later section.

3. THE AKAMAI NETWORK
In this section and the next one, we apply our CDN-

charting methodology to two leading CDNs, namely,
Akamai and Limelight. For each CDN, we not only
chart out its content server network but also its DNS
infrastructure.

3.1 Immediate results from charting

3.1.1 Akamai CNAMEs

Through straightforward DNS resolutions of the 16M
unique web hostnames, we obtained 3, 260 unique Aka-
mai CNAMEs, which can be classified into 3 types:
Interesting enough, these three types of CNAMEs ap-

type # of CNAMEs
(a) *.akamai.net 1964
(b) *.akadns.net 757
(c) *.akamaiedge.net 539

pear to offer very different services.

3.1.2 Service types

It appears that the 3 types of Akamai CNAMEs are
for 3 distinctly different services.

• type (a) – akamai.net (1964 in total). This type
matches the conventional understanding of Akamai,
as a content distribution network: 1) Each DNS res-
olution returns 2 IP addresses (occasionally more);
2) When resolved from different locations, the ob-
tained IP addresses are different; 3) For each Akamai
CNAME, there are hundreds (or even thousands) of
unique IP addresses by aggregating from all the van-
tage points. Altogether, we’ve discovered over 11, 500
unique IP addresses belonging to this type.

• type (b) – akadns.net (757 in total). Apparently, Aka-
mai customers use this type only for global load bal-
ancing [5], not for content distribution. A customer

may elect this service if it possesses its own content
servers; Akamai is then solely used to direct clients
to the customer’s servers. We make this conjecture
because each of the akadns.net CNAMEs only map
to a few IP addresses. As a typical example, disas-
teraid.fema.gov.akadns.net maps only to 3 geographi-
cally distributed IP addresses (combined from all the
vantage points).

• type (c) – akamaiedge.net (539 in total). We obtain
more than 36, 000 unique IP addresses from this ser-
vice. The set of addresses is completely disjoint from
the 11, 500 IP addresses found for type (a) CNAMEs.
From detailed examinations (see Appendix), we con-
clude that this service is for dynamic content distribu-
tion. In addition, Akamai uses virtualization technol-
ogy to provide customers with isolated environment.

In summary, we have discovered 11, 500 content servers
for type (a) CNAMEs (handling Akamai’s conventional
content distribution service); 0 content servers for type
(b) CNAMEs (for Akamai’s load-balancing service); and
another ∼36,000 unique IP addresses for type (c) CNAMEs.
These numbers are particularly surreal given that Aka-
mai claims to deploy ∼25,000 servers worldwide, a num-
ber which is much larger than 11, 500 and much smaller
than 36, 000. This is resolved in the subsequent subsec-
tions.

3.2 Expanding the Akamai server list
We make another key observation – Akamai tends

to use contiguous blocks of IP spaces. Hence, if 12.-
14.146.45 and 12.14.146.48 are IP addresses discovered
through our charting method, then it is reasonable to
conjecture that 12.14.146.46-47 are also part of Akamai
IP addresses, as well as addresses beyond (e.g., 12.14.-
146.49). A conjectured IP address can be verified if
we can download an Akamai customer’s content from
it. This might cause concern, because not only Aka-
mai’s server will be verified through this test, regular
proxy servers will as well. As a matter of fact, this
is indeed true. During the expansion process, we ac-
tually included an IP address, which through reverse
DNS mapping, shows it belonging to the CoralCDN.
(It is interesting that CoralCDN does serve clients who
request content not in its delivery list. We verified that
commercial CDNs (both Akamai and Limelight) do not
allow such behavior, i.e., trying to download content
served by one CDN from another will not succeed.)

Fortunately, we discovered a more reliable method.
We send a HTTP HEAD request to potential Akamai
servers – “HEAD / HTTP/1.0”. This is a request to get
the meta information of the root level file. To Akamai’s
servers, this is not a valid request (because it cannot
be associated with any customer), so it will respond
with “HTTP/1.0 400 Bad Request” and additionally

with “Server: AkamaiGHost”. It is the “Server” field
that confirms this is indeed an Akamai Global Host.
Note that Akamai servers do not reveal themselves if a
valid HTTP HEAD request (e.g. “HEAD / HTTP/1.1”
with “Host: www.bestbuy.com”) is submitted, in those
cases, the response will contain “Server: Apache”, which
isn’t helpful at all. We remark that there are about

1, 000 exceptions where servers reply with “Server: Microsoft-
IIS/6.0”. We assume these servers still belong to Aka-
mai, as we don’t expect other proxy servers to have
similar characteristics – occupying only a few IP space
blocks, each with a large number of consecutive ad-
dresses.

In the end, we are able to first eliminate 1, 413 IP ad-
dresses from our previously discovered list of 11, 500 IPs
corresponding to service type (a) and further expand
the Akamai server list to more than 23, 000 servers.

3.3 Large-scale DNS infrastructure
It is well-known by now that Akamai employs a two-

tier DSN infrastructure. As an example, a query of
a1105.b.akamai.net is first sent to Akamai’s top level do-
main servers (e.g., za.akamaitech.net), which responds
with referrals of second level domain servers (e.g., n0b.-
akamai.net). It is the second level domain server that
eventually returns IP addresses [23].

We observe that the same second level name server
(e.g., n0b.akamai.net) maps to different IP addresses
when being resolved from different locations. This nat-
urally raises a question – how many DNS servers does
Akamai actually operate for its DNS infrastructure?
To answer this question, we need to find all the IP
addresses corresponding to all the second level name
servers. But this is exactly the same problem as chart-
ing the content servers of Akamai! Hence, we first ob-
tain a list of the second level name servers (e.g., n0b.-
akamai.net) from the Akamai CNAME list. There are
261 of them in total. Then, we instrumented the same
measurement platform and discovered that Akamai uses
5, 313 name servers for the second level domain, which
is a surprisingly large number. Additionally, we observe
that the IP addresses of these name servers are a subset
of the 23, 000 IP addresses discovered when charting the
Akamai type (a) content servers. Moreover, they cover
all the /24 IP prefixes of those 23, 000 IP addresses. At
this point, it is natural to conjecture whether Akamai
runs at least one name server in each of its distributed
cluster. (We will confirm later that this is indeed the
case!)

3.4 Summary of results
Combining with discoveries on the akamaiedge.net

network, we eventually compile a list of more than 27, 000
content servers, which we conclude is the complete Aka-
mai global network. Among these servers, ∼6,000 are

also running as DNS servers. The discovery of Aka-
mai’s large-scale DNS infrastructure is the key to the
delay performance study in later sections.

Using a commercial IP to geolocation database, the
total ∼27,000 Akamai servers map to 65 different coun-
tries. More than 60% servers are in US and about 90%
in 10 countries, as shown in Table 2. Note that the IP to
geolocation database is reasonably accurate only at the
country level. In a later section, when the need arises,
we will describe how to locate the Akamai servers pre-
cisely. Additionally, these servers span over 656 ASes.
Interestingly, the distribution here is much flat. For in-
stance, among all the US servers, there are only 15% in
7 of the top 10 ISPs [7].

Country # of IP Percentage(%)
United States 16,843 61.09
United Kingdom 1,690 6.13
Japan 1,622 5.88
Germany 1,103 4.00
Netherlands 857 3.11
France 722 2.62
Australia 514 1.86
Canada 438 1.59
Sweden 396 1.44
Hong Kong SAR 370 1.34
Others 3018 10.95
Total 27,573 100.00

ISP # of IP Percentage(%)
Qwest 941 5.59
AT&T 869 5.16
Time Warner 365 2.17
Verizon 261 1.55
America Online 75 0.45
Cablevision 18 0.11
Charter 6 0.04
Others 14,308 84.95
Total 16,843 100.00

Table 2: Geographic and ISP Distributions of
the Akamai Network.

4. THE LIMELIGHT NETWORK
The same process and measurement platform is used

to chart the Limelight network (see [6] for additional
details). In fact, charting Limelight network is even
easier – since Limelight has its own AS, we can simply
crawl all the IP addresses in the AS and verify them.
In this section, we focus on unique discoveries about
Limelight.

4.1 IP anycast based DNS infrastructure
Radically different from the Akamai network, the Lime-

light private DNS infrastructure appears to have only
one level – all DNS requests to domain llnwd.net are
handled by “four” name servers: dns11.llnwd.net through
dns14.llnwd.net. Resolving from all the global vantage
points, these name servers always map to the same IP
addresses. However, tracerouting these name servers
from different locations reveals what’s really happen-
ing behind the scene. For example, a traceroute from a
Berkeley traceroute server shows that dns11.llnwd.net
is 11.47 ms away, passing the last hop Limelight router
(lax.llnw.net – obviously located at Los Angeles) 11.45
ms away. Then, another traceroute from a Princeton
traceroute server shows that it is 9.05 ms away, passing
the last hop Limelight router (iad.llnw.net – Washing-
ton, D.C.) 8.70 ms away. Moreover, yet another tracer-
oute from a University of Washington traceroute server
shows it is 1.24 ms away, passing the last hop Lime-
light router (sea2.llnw.net – Seattle of course) 1.03 ms

away. These results suggest that the same DNS server is
simultaneously at Los Angeles, Washington, D.C. and
Seattle, which apparently can not be true.

We therefore conclude that Limelight uses IP any-
cast to announce their name servers. (Recall that IP
anycast is implemented by sending BGP advertisements
for the anycast address from multiple, geographically-
distributed nodes.) Naturally, the same question rises
again – how many real servers Limelight operates for
the DNS service. Although there is no direct method
allowing us to uncover the mapping from an anycast IP
address to actual servers, we conjectured that Limelight
will reuse its content servers as DNS servers as well. To
verify this conjecture, we send trial DNS queries to the
entire list of more than 4, 100 content servers discovered
previously (simply try to reverse query “1.0.0.127.IN-
ADDR.ARPA”), we discover that more than 3, 900 con-
tent servers are also running as name servers (a much
higher percentage than Akamai!).

4.2 Summary of results
In short, we discover ∼4,100 Limelight content servers,

among which ∼3,100 are also running as DNS servers.
The locations of the Limelight servers are identified

precisely (we will elaborate later) and shown in Table 3.
In summary, there are 10 in US and 9 in other conti-
nents. Note that the single server at Sydney does not
respond during our later study, so only the other 18 are
considered.

City # of servers
Washington, D.C. 552
Los Angeles 523
New York 438
Chicago 374
San Jose 372
Dallas 195
Seattle 151
Atlanta 111
Miami 111
Phoenix 3
Total 2830

City Country # of servers
All Cities United States 2830
Frankfurt Germany 314
London United Kingdom 300
Amsterdam Netherlands 199
Tokyo Japan 126
Toronto Canada 121
Paris France 120
Hong Kong Hong Kong SAR 83
Changi Singapore 53
Sydney Australis 1
Total - 4147

Table 3: Geographic Distributions of the Lime-
light Network.

5. CDN AVAILABILITY
Having charted out all of the Akamai/Limelight con-

tent servers, we can monitor the health of these servers
and compare between the two CDNs. We attempt to
answer the following question: is the difference in terms
of management and maintenance overhead (due to the
different CDN design philosophies) reflected and thus
can be observed from the status of the servers? To this
end, we have continuously monitored all the servers for
more than two months (Feb. 15 - April 26, 2008), by
connecting to port 80 of each once every hour. If a
server cannot be connected for 2 consecutive hours, it is
treated as down (temporary reboots are thus removed).

93 94 95 96 97 98 99 100
0

20

40

60

80

100

Availability(%)

C
D

F(
%

)

Akamai−single
Limelight
Akamai−cluster
Limelight−cluster

(a) Availability

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

UP Time(hour)

C
D

F(
%

)

Akamai−single
Limelight
Akamai−cluster
Limelight−cluster

(b) Uptime

Figure 3: CDN Availability and Uptime

We compare two characteristics – server availability and
continuous uptime.

For the availability evaluation, we determine both
cluster availability and server availability, where “clus-
ter” refers to clusters of CDN servers in the same lo-
cation (the cluster algorithm is discussed in Section 6).
There are 1,158 Akamai clusters and 18 Limelight clus-
ters in our evaluation. For each cluster, if it has at least
one member up at the measurement time, we consider
the cluster available. Thus the cluster availability is the
percentage of available clusters among all clusters. The
individual server availability is computed by removing
unavailable clusters, and then calculating the percent-
age of available servers from the remaining servers. In
this way, we remove possible network failures from the
individual server statistics. Figure 3(a) provides the
availability distribution. We can see that both Akamai
(95%-98% for individual servers, 94%-99% for clusters)
and Limelight (96%-99.8% for individual servers, 100%
most of the time for clusters) have very good availabil-
ity. More importantly, Limelight shows higher availabil-
ity than Akamai, in terms of both individual servers and
clusters.

Figure 3(b) shows the uptime results. As we would
expect, clusters have much longer uptime than individ-
ual servers. In addition, many servers are always avail-
able throughout our measurement period – more than
50% for Akamai and more than 70% for Limelight. And
again, Limelight shows much longer server uptime than
Akamai. In summary, both the server availability and
uptime seem to suggest that the Akamai network is in-
deed more difficult to maintain. This should be under-
standable, as Akamai has many more servers which are
distributed in many more locations.

6. EVALUATING DELAY PERFORMANCE
In this section, we evaluate the delay performance of

the two CDNs – Akamai and Limelight. We describe

how to adapt the popular King approach [8] and then
present results from our large-scale study.

6.1 Measurement methodology

6.1.1 The King approach

Because both Akamai and Limelight operate a large
number of DNS servers on their regular content distri-
bution servers, we are able to launch DNS-based de-
lay measurement and compare the delay performance
of the two CDNs. In particular, we use a variant of
the popular King approach, originally described in [8],
which is used to measure the delay between an arbitrary
open recursive DNS server and another arbitrary DNS
server (not necessarily open recursive). King has been
widely used in measurement studies; and re-explored
several times with new variants (the most recent exam-
ples are [10, 18]). The original King approach comes
in two versions. Since we use both of them, we briefly
summarize each version and point out the main differ-
ences. Suppose we desire to measure the delay between
the open recursive DNS server D and a specific DNS
server T .

In the first version, a measurement client M sends a
DNS query to D to resolve a bogus name claimed in
the authority of T . Since D is an open recursive DNS
server, it will try to resolve this name on behalf of M ,
(and, of course, get a negative response from T). If all
goes well, the RTT between D and T is simply given by
the RTT from M to T (via D) minus the RTT between
M and D, The simplicity of this version comes with
a cost of accuracy – there is no assurance that D will
forward the query to T , rather than to some other DNS
server (say T ′) also in charge of the same domain. This
might not be an issue at all if there are only a few T s
and they are all co-located. However, one needs to be
extremely careful, as there could be hundreds (or even
thousands) of T s for the same domain, and to further
complicate things, if these T s are geographically widely
distributed. As will become clear, this is indeed the
case we are dealing with here.

Fortunately, the second version of the King approach
suggests a clever way to solve this problem. As il-
lustrated in Figure 4, one registers a domain (call it
cdn.net) and operates a DNS server (say S) to respond
to queries for this domain. During the measurement
process, M sends a DNS query to D resolving a do-
main name T.cdn.net. This query will cause D to con-
tact S, because S is in charge of cdn.net. When S re-
ceives such a query, it does not respond with an IP ad-
dress, but instead with a referral, claiming that the sub-
domain T.cdn.net is delegated to another name server
(say ns.T.cdn.net) and the IP address of that name
server is that of T . D forwards this response back to
M and this round of DNS query is completed. There is
no measurement yet, but this process causes the result

D: open recursive
DNS server

M: measurement
client

T: target
(also a DNS server)

S: our DNS server
(domain: cdn.net)

5

4

3

2

1

8

7
6

1 NS ? T.cdn.net

2 same as (1)

3
NS: ns.T.cdn.net;
Addr: T

4 same as (3)

5 A ? planA.T.cdn.net

6 same as (5)

7
error / points to
root DNS

8 same as (7)

ca
ch

in
g

 D
m

ea
su

re
m

en
t

Figure 4: Measuring Delay using DNS Servers
(the King approach – 2nd version)

(the authoritative name server for domain T.cdn.net is
ns.T.cdn.net with address T) to be cached at D. Next,
M sends another query to D to resolve a hostname in
T.cdn.net (say planA.T.cdn.net) shortly after. At this
time, D does not contact S again, but instead forwards
the query to T directly. Obviously, T will respond with
an error message, which is then sent back to M . It
should now become clear this second query round in-
cludes an exactly one RTT between D and T (and not to
some other T ′). The sub-domains under cdn.net need to
be randomized in order to combat undesirable caching
at Ds (i.e., use random-T.cdn.net instead of T.cdn.net).
This together with a number of other details are covered
in the original King paper [8].

6.1.2 Measuring delay of CDNs

Now we are ready to describe how we can measure the
delay performance of CDNs using the above approach.
Our goal is to measure the delay from each of the van-
tage point D (that is, from each open recursive DNS
server) to the CDN, that is, to the content server that
the CDN redirects D to. For the “content server” we
choose the CNAME resolved to the largest number of
CDN servers globally, namely, a1105.b.akamai.net (used
by BestBuy) for Akamai and move.llnwd.net (used by
Move Networks) for Limelight. Call this CNAME N .
For each vantage point D, our measurement client M
first sends a DNS query to resolve N and obtains the IP
address that the CDN content server used to serve D;
let’s call this content server C. We now need to measure
the delay between D and C. If C, in addition to being
a content server, is a DNS server, then we would simply
use King to get the delay between the open recursive
server D and the DNS server C. More generally, we
have to find a content server T in the same cluster as C
which happens to also operate as a DNS server. As long
as we can ensure that T is in the same cluster as C, the
delay between D and T using King will be equivalent
to the delay between D and C (which is what we ulti-
mately want). Here, the same cluster represents all the

servers in the same location. Of course, to find T accu-
rately, we need to be extremely careful to group CDN
servers into the same cluster, which we elaborate on in
the next two subsections.

6.2 Clustering Akamai servers
We desire high fidelity when clustering the Akamai

servers together. Our main tool here is traceroute –
most Akamai servers can be reached via default UDP-
based traceroute and the rest can be reached via TCP-
based traceroute at port 80.

Based on a key observation that many Akamai servers
are deployed inside ISP POPs, which are naturally very
close to one of the ISP routers, we use undns [9] to un-
cover the location of nearby ISP routers and then use
that location for Akamai server. Note that we only
consider routers within s (ms) from Akamai servers.
In addition, we design a divide and conquer method
to speed up the clustering process, which is based on
earlier observations that Akamai tends to occupy large
blocks of consecutive IP addresses. We refer interested
readers to [6] for the details of the clustering algorithm
and only share one lesson learned during the clustering
process – it helps tremendously to launch traceroute
from multiple PlanetLab nodes. When traceroute was
only launched from one single location (our initial de-
ployment), we were baffled by quite a number of IP
addresses, where the last hop router before the target
is often times very far (e.g., 30 ms or more) away from
the target. However, when we launch traceroute from
more than 180 PL nodes, we are always able to locate a
last hop router within sms away from any Akamai tar-
get. Using Global Crossing (gblx.net) as an example,
a traceroute to an Akamai target actually enters this
ISP’s network at a point very close to the traceroute
source, which then travels a long way during the last
hop to the Akamai target located far distantly. Tracing
from hundreds of locations essentially allows us to start
from a point which is close enough to the target and
thus avoid the long hop inside the ISP.

During our experiment, we choose s to be 1.5ms and
have clustered around 26, 500 (a small number of servers
are down during the clustering) Akamai IP addresses
(1, 122 /24 prefixes) into 1, 158 clusters. The average
delay between the last hop router used in clustering
and corresponding Akamai target is 1.07ms. It is im-
portant to point out that a crude clustering rule, such
as /24 prefix clustering, is far from accurate. For ex-
ample, under the same prefix 81.52.248, one block of
Akamai servers is located inside Level3 (AS3356) at
Chicago, while another block is located inside Open-
Transit (AS5511) at Dallas, and yet another block is
located at University of Connecticut at Storrs.

We acknowledge that the clustering might not be per-
fect. For instance, 1ms between the ISP router and the
Akamai server could still mean a long physical distance.

Additionally, ISP misnaming [17] (although quite rare)
could potentially cause us to wrongly cluster some Aka-
mai servers together. Hence, on top of the above clus-
tering, during our later measurement studies, whenever
we need to choose another Akamai server close to a
given one, we not only confine ourselves to the same
cluster, but always choose an IP address with the small-
est distance in IP space. Finally, due to the incomplete-
ness of undns (even including two additional rule sets
from [15, 16]), we are only able to identify exact loca-
tions of around 17, 000 Akamai servers (about 2/3 of the
complete Akamai network). The rest 9, 000 can only be
clustered, but not located.

6.3 Clustering Limelight servers
It turns out that clustering Limelight servers is a

much easier task. Limelight is generous enough to pro-
vide reverse DNS mappings for all of its IP addresses.
For example, 87.248.208.38 is reversely mapped to cds28.-
lon.llnw.net, which indicates that the server is located
in London (LON).

6.4 CDN delay performance
Now we are ready to evaluate the delay performance

and compare between the two CDNs. For both the
CDNs, we measure from all of the vantage points. We
measure both the delay to its DNS system, as well as
to actual content servers.

6.4.1 The Akamai network

To measure Akamai’s private DNS system, we are
only interested in delays at the second tier. Hence, we
need to send a query to seed the vantage points (Ds) so
that it does not need to contact the root level Akamai
name servers during actual measurements. To be spe-
cific, our measurement client M first sends a query to
D to resolve a popular CNAME (e.g., a1105.b.akamai.-
net). Next, it sends another query to D to resolve
an artificial CNAME under the same sub-domain (say
random.b.akamai.net). This triggers D to contact one
of Akamai’s second level DNS servers and eventually M
gets an error response. Subtracting the delay between
M and D from the total time gives the delay from D to
Akamai’s DNS system.

To measure delays to actual content servers, M first
sends a query to D resolve a1105.b.akamai.net. When
it receives the IP addresses of the content servers, which
Akamai uses to serve D, it chooses another Akamai
server in the same cluster (also closest in IP space, to
be specific) that is also running as a name server. M
then follows the approach detailed in 6.1 to measure the
delay between D and the content server.

Now we report the delay performance of the Akamai
network, as shown in Figure 5(a). Using common in-
dustry standard, we focus on the 95th percentile of the
delay distribution.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
D

F
 (

%
)

delay (ms)

akamai.net (svr)
akamai.net (dns)
akamaiedge.net
95th percent

(a) Akamai

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
D

F
 (

%
)

delay (ms)

measure dns
measure svr
95th percent

(b) Limelight

Figure 5: Delay Performance
targets delay (ms)

akamai.net svr 103.38
akamai.net dns 138.35

akamaiedge.net dns 189.29

We make the following observations: 1) Using akamai.-
net as an example, the results show that Akamai’s sec-
ond level name servers are reasonably close to clients,
but not as close as its content servers. This is observed
by the comparison between the 95th percentile delays
to its DNS system (138.35ms) and its content servers
(103.28ms). 2) Delays to the DNS system of akamai-
edge.net are significantly higher than those to akamai.-
net, shown by the comparison between delays to the two
DNS systems – 138.35ms for akamai.net vs. 189.29ms
for akamaiedge.net. This should be understandable as
the akamaiedge.net network (again, using virtualization
to deliver dynamic content) is likely available in far
fewer locations than the akamai.net network (primar-
ily for static content).

6.4.2 The Limelight network

Limelight has a flat DNS structure, so it’s straight-
forward to apply the first version of King to measure
delays to its DNS system. In short, M sends queries
of a popular CNAME (e.g., move.vo.llnwd.net) to seed
the vantage points and then sends artificial queries to
measure the delay. Delays to its content servers are
measured in the same way as in the Akamai case, fol-
lowing the approach detailed in 6.1.

targets delay (ms)
limelight dns 170.22
limelight svr 221.74

We make the following observations: 1) Delays to
Limelight content servers are actually much higher than
to its DNS system. This suggests Limelight is actively
redirecting clients to non-nearest locations (although
not too far away), perhaps to optimize its peering costs
with various ISPs. 2) Delays to the Limelight network
are a lot higher than to the Akamai network as well
– the DNS resolution delay of Limelight is 23% higher
than Akamai (170ms vs. 138ms); and the content server
delay of Limelight is 114% higher than Akamai (222ms
vs. 103ms). The delay comparison between Akamai and
Limelight at various levels are summarized in Table 4.

akamai.net akamaiedge.net limelight
delay (ms) DNS server DNS DNS server

avg. 40.33 28.75 52.15 43.91 81.86
50% 15.01 8.92 20.58 17.13 43.15
90% 85.40 55.76 107.79 138.50 168.02

95% 138.35 103.38 189.29 170.22 221.74

Table 4: Delay Comparison between Akamai
and Limelight

600

800

1000

m
s)

akamai dns

akamai svr

limelight dns

limelight svr

0

200

400

600

n. america europe asia oceania s. america africa

d
e

la
y

 (
m

Figure 6: Delay Performance Breakdown (by
continent)

6.4.3 Performance breakdown

So far, we’ve observed that there is a big gap in de-
lay performance between Akamai and Limelight. In
this subsection, we break down the performance by geo-
graphic regions and examine them individually. In par-
ticular, we separate vantage points by their continent
and plot corresponding delay performance (at 95% per-
centile) in Figure 6 and Table 5.

We observe that the delay performance has a positive
correlation with the coverage of each CDN in a spe-
cific target geographic region. Using delays to content
servers as an example, Akamai and Limelight both have
good and comparable performance in North America,
where both CDNs have a good coverage (even Lime-
light has 10 data centers). To be specific, the delay to
Limelight server is only 18% more than Akamai (79ms
vs. 67ms). However, moving to Europe, where Lime-
light has fewer data centers (4 in fact), its delay is over
33% more than Akamai (110ms vs. 83ms). The gap
is more prominent in Asia (284ms vs. 126ms, or 127%
worse), where Limelight merely has 3 data centers to
cover a much bigger geographic area. Similarly, a even
bigger gap should not be a surprise in Oceania, South
America and Africa, given that Limelight does not even
have presence in these regions. More over, it’s worth
pointing out that the delay performance of Akamai also
degrades significantly, entering into less covered regions
(e.g., South America and Africa).

7. EVALUATING DATA CENTER
DEPLOYMENT

7.1 Do additional data centers help?
In this section, we consider the marginal gain in per-

formance when a CDN adds one or more data centers.

Akamai Limelight
delay (ms) DNS server DNS server

North America 115.81 67.24 78.64 79.03
Europe 131.08 82.54 103.34 110.05

Asia 122.5 125.53 199.84 284.4
Oceania 163.68 173.17 279.12 266.66

South America 402.35 312.52 388.17 368.66
Africa 961.03 647.08 596.03 591.45

Table 5: Details of Delay Performance Break-
down

 90

 110

 130

 150

 0 2 4 6 8 10 12 14 16

de
la

y
(m

s)

of additional data center deployment

akamai.net (dns)
akamai.net (svr)
Limelight

Figure 7: Performance w/ Additional Data Cen-
ters

In particular, we provide a measurement methodology
that lets one CDN exploit another CDN’s deployment to
assess the marginal gain of additional data centers. As
a case study, we will consider how Limelight can learn
from Akamai’s current deployment and choose good ad-
ditional locations.

In this methodology, from each vantage point, we si-
multaneously measure the delays to Akamai’s content
servers and to all of the Limelight locations. Then,
we design the following simple greedy algorithm to pick
good next locations to improve Limelight’s delay perfor-
mance. The algorithm works as follows. We go through
each Akamai location and evaluate the delay reduction
if Limelight deploys just one more data center at that
location. We then rank all the Akamai locations and
choose the best one to add to the list of existing Lime-
light data centers (say L). This gives us the first ad-
ditional location. Then, we repeat the same process to
identify the second additional location, with first addi-
tional location treated as part of Limelight. We repeat
this process to obtain the third additional location and
so on. During the process of evaluating a particular van-
tage point D, we first determine the location from where
Akamai serves D. If the location is in the list of Lime-
light data centers L and the delay to Akamai is less than
to Limelight, we take the delay to Akamai. Otherwise,
we take the delay from the best Limelight location. Fig-
ure 7 shows the delay improvement (at 95th percentile)
with the progressive deployment of more data centers.

We make the following observations:

 140

 160

 180

 200

 220

 240

 260

 2 4 6 8 10 12 14 16 18

de
la

y
of

 L
im

el
ig

ht
 (

m
s)

of data centers deployed

effect of data center deployment

Figure 8: Effectiveness of Data Center Deploy-
ment

1. When no additional data center is deployed and we
always route to the closest of the 18 Limelight data
centers, the delay is 142ms. This value is far better
than when redirection is used from Limelight’s DNS
system (222ms). Hence, if Limelight starts to focus
on delay performance, it could make significant gains
even without deploying additional data centers.

2. By learning from Akamai’s existing deployment, a
few more data centers can dramatically reduce the
delay and make Limelight on par with Akamai. For
instance, 5 more data centers can reduce the delay to
about 10% of Akamai and 9 more is enough to match
Akamai. This should be surprisingly encouraging for
Limelight!

3. The choices made by our algorithm make intuitive
sense. For instance, the top two suggestions are
Taipei (Taiwan) and Seoul (Korean). Given the lim-
ited presence of Limelight in Asia (only Tokyo, Sin-
gapore and Hong Kong at the moment), such choices
appear quite natural to Limelight. Note that, when
comparing locations, we choose to rank them by the
total delay reduction across all vantage points (in-
stead of the 95% percentile). This choice is most
likely the reason why the delay reduction does not
follow a convex curve. Another reason might be be-
cause our algorithm is a heuristic. Finally, it should
not be surprising that with more than 10 additional
data centers, Limelight’s delay can actually be bet-
ter than Akamai’s. As observed before [11], Akamai
does not always redirect clients to the closest loca-
tion, but rather a good enough one. Hence, it’s nat-
ural that best delays to Limelight (with additional
data centers) could surpass good enough delays to
Akamai.

7.2 Which locations matter?
We also use measurements to evaluate the deploy-

ment of Limelight’s current data centers. We ask the
question: are the current locations good choice, and
which of the 18 locations really matter?

170

190

m
s)

average

worst

110

130

150

0 1 2 3 4

d
e

la
y
 (

m

of data center failures

Figure 9: Performance w/ Data Center Failures

With simultaneous delay measurements to all 18 Lime-
light data centers, we first determine where the data
center should be located if Limelight were only to de-
ploy one single data center; and where the additional
data centers should be deployed to improve the delay
performance. It turns out that Chicago is on the top of
the list. Moreover, with only 5 additional data centers
(in ranked order: Tokyo, Frankfurt, San Jose, Wash-
ington D.C. and Singapore), Limelight can do almost
as good as with its current 18 data centers. Clearly,
other data centers are most likely deployed so that there
are peering relationships to more ISPs, instead of solely
from a delay perspective.

7.3 Robustness of data center deployment
One of the key promises of CDNs is to be able to

cope with failures. High profile failures not only hurts
business temporarily, but also damages customers’ con-
fidence in the long run. Compared to Akamai’s scat-
tered deployment, Limelight is likely to be more prone
to cluster failures. In this subsection, we evaluate the
robustness of a Limelight-like deployment.

Using Limelight’s current data centers, we introduce
artificial failures and study the impact on the delay
performance. Specifically, we measurement delays from
each vantage point to all 18 Limelight data centers si-
multaneously. We assume Limelight could engineer its
global traffic management perfectly, which implies traf-
fic can always be routed to the nearest (in delay terms)
data center, even with the presence of failures. We arti-
ficially fail one or several data center and use the delay
to the nearest remaining data center as the delay from
the vantage point. Given the number of data center
failures, we enumerate all the cases (e.g., there are 18
cases for 1 data center failure,

(
18
2

)
= 153 cases for 2

failures, and so on), and calculate the 95% percentile
delay from all the vantage points. We report the delay
averaged over all the cases, as well as the worst case.

From Figure 9, we conclude that the current deploy-
ment of Limelight is very robust against data center
failures. One data center failure has very minimum per-
formance impact, in both average and worst case. Even
when there are up to 4 data center failures, the aver-
age delay performance only increases 5.5% from 142ms
to 150ms. It is true that the delay increases more for

the worse case failures. For example, when there are
up to 4 data center failures, the worst delay increases
28.2%, from 142ms to 182ms. Nevertheless, this par-
ticular failure case would happen only if all 3 Limelight
data centers in Asia (Tokyo, Singapore and Hong Kong)
are wiped out, plus an additional data center in San
Jose down at the same time. Failures as such are very
unlikely.

8. EVALUATING IP ANYCAST
We learned in Section 4 that Limelight performs its

DNS resolution in the same 18 data centers that house
its content servers (and in fact using the same hosts for
content servers). We also saw that Limelight uses IP
anycast to route a DNS query to a nearby data center.
We now ask, just how good is the delay performance of
Limelight’s IP anycast technology? Does Limelight suc-
ceed at directing most queries to the closest center? Can
its DNS-resolution delay performance be significantly
improved, resulting in a lower overall delay, potentially
allowing it to enter more lucrative markets of delivering
dynamic content (given the increasingly fierce competi-
tion and continuing commoditization of static content
delivery)?

 0

 20

 40

 60

 80

 100

-20 0 20 40 60 80 100

C
D

F
 (

%
)

delay between anycast and closest

anycast - closest

(a)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

C
D

F
 (

%
)

rank of redirected server (in delay)

redirection choice

(b)

Figure 10: (a) DNS delay of Limelight’s IP any-
cast. (b) How often Limelight redirects clients
to non-nearest locations?

It is also interesting to evaluate anycast system as a
study of IP anycast performance in its own right. Dif-
ferent from anycast systems evaluated in previous stud-
ies [18], the Limelight IP anycast system operates thou-
sands of DNS servers, located in 18 widely distributed
geographical locations. Moreover, Limelight has exten-
sive peering relationships with a large number of ISPs.

By comparing the DNS delay with the best delay to
the 18 data centers, we can evaluate whether IP anycast
always routes requests to the closest DNS server. To
ensure a fair comparison, for each vantage point, we
measure these two delays at the same time. Figure 10(a)
shows the delay gap between the DNS system and the
best location is 25ms at 90th percentile and 68ms at 95th

percentile. Compared to other commercial IP anycast
deployments [18], one can conclude from these results
that the Limelight IP anycast works very well.

Additionally, from each vantage point, we rank all

the Limelight data centers based on the respective mea-
sured delay and evaluate how often Limelight redirects
clients to locations not closest. From the result in Fig-
ure 10(b), it is clear that Limelight does not redirect
clients to the closest server more than 37% of the time,
and the redirection is beyond the top three locations
about 20% of the time. (We treat two locations equal
if delays to them differ less than 10ms.) This is most
likely because that Limelight focuses more on optimiz-
ing peering costs for delivering large objects (e.g., stream-
ing videos) rather than delay performance.

9. RELATED WORK
Although there have been many studies on Content

Distribution Network [23–26] and this is generally con-
sidered a well-understood topic. Very little attention
has been paid to the recent success of the alternative
design philosophy – the one Limelight has championed
– and its implications. To our best knowledge, this pa-
per is the first effort to make a head-to-head comparison
between difference CDN design philosophies and shed
light on this matter.

The performance of CDNs has been of interest al-
most since their inception [11–14]. Johnson et al. [11]
provide one of the earliest studies of the performance
of Akamai and Digital Island, where a key observation
is that rather than always redirect clients to the best
(in terms of delay) content servers, CDNs often satisfy
with a good enough one. The study is limited by hav-
ing no relative comparisons between the CDNs, as well
as using only 3 evaluation clients (vantage points). Kr-
ishnamurthy et al. [12] conduct a detailed study of the
usage and download time for 7 CDNs that were popular
circa 2001. They employ 20+ clients in the measure-
ment. Compared to these earlier works, which made
informative but rather limited scale probes into CDNs,
our study aims at charting the CDNs to their complete-
ness, as well as measuring their performance at a much
larger scale (several orders of magnitude more measure-
ment clients). Furthermore, we explore the idea that
how one CDN can leverage the existing infrastructure
of another CDN to refine its deployment. We relate
our measurement study to data center deployment, a
problem increasingly attracting more attention beyond
CDNs, as many large Internet content and search com-
panies are also rolling out their own private data cen-
ters.

Our data center placement problem shares similar-
ities with early replica placement studies [20–22]. An
CDN with operational data can easily borrow techniques
from those studies. For example, it can rank all the lo-
cations based on the amount of traffic originated [21]
and select top M as candidates. Most likely Akamai
already has deployment in these M locations. Thus,
the CDN can use our techniques to measure delay per-

formance from each vantage point to all the candidate
locations. Finally, it can select the best location greed-
ily [20], and then the next best location, and so on.

In our measurement study, we extensively employ
King [8], which is widely used today in Internet mea-
surements. Ballani et al. [18] conduct extensive evalua-
tions of a number of deployed IP anycast systems. Their
results show that ad-hoc deployment of IP anycast often
does not route requests to the closest server. Further,
they conjecture and validate that a good IP anycast
deployment should be geographically distributed and
preferably within a single ISP. However, they were not
able to evaluate with their methodology scenarios be-
yond that. The Limelight IP anycast system is rather
different in that Limelight is not a customer of any sin-
gle ISP, but rather it peers extensively with many ISPs.
Conceptually, IP anycast requests should be quickly
routed to the closest Limelight data center. Hence, IP
anycast should work very well, as we verified. More-
over, our measurement clients are about 4 times more
than in [18], giving us much better coverage.

Mao et al. [28] conducted a large scale measurement
study and quantify the closeness of clients and their
LDNSs. They observe a large percent of the clients are
in fact not close to their LDNSs (in the sense of AS,
network aware clustering, network hop, etc.). Hence, a
DNS-based redirection might not be very effective after
all. We note that their problem is orthogonal to the
issues we consider in this paper. Furthermore, when
it is desirable and the DNS-based redirection is off by
too much, CDNs can always instruct content servers to
redirect clients again to much closer servers. During
the recent study on dark DNS behavior, Oberheide et
al. [27] made an interesting discovery and conjectured
that Akamai is very likely to be using King-like DNS-
based measurements as part of its global measurement
infrastructure. Its own participation in leveraging pub-
lic DNS infrastructure for measurement probably makes
it more receptive to the type of measurements required
by the methodologies discussed here.

Our method of clustering Akamai servers uses tracer-
oute and reverse DNS names of ISP routers, a similar
idea as GeoTrack [19]. However, with the assistance of
a large number of PlanetLab nodes and also due to the
fact that Akamai servers are usually in ISP POPs, our
clustering should provide much better accuracy.

10. CONCLUSIONS
Using two CDNs, Akamai and Limelight, as exam-

ples, we have presented methods to chart CDNs, to
measure their performance, and to guide CDN design
decisions, e.g., whether to use IP anycast and where
to deploy in next geographic location. We have dis-
covered ∼27,000 content servers for Akamai (includ-
ing ∼6,000 name servers) in 65 countries, and ∼4,100

content servers for Limelight (including ∼3,900 name
servers) in 18 locations. Using an enhanced King ap-
proach launched from a large number of vantage points,
we have quantified the delay performance perceived by
Akamai and Limelight customers worldwide, for both
DNS resolution and content serving. We have also eval-
uated a large-scale IP anycast deployment (used in Lime-
light’s DNS system), and developed a methodology for
locating additional content servers in a CDN.

Note that, as CDNs constantly evolve, charting and
performance measurement can complement each other
to maintain a complete and up-to-date view of the CDNs.
A complete chart, requiring a large number of DNS
queries, can be done once every few months. Between
charting, the performance measurements, requiring less
overhead, can be repeated more frequently. New CDN
servers/locations discovered via such measurements can
be verified and expanded using our method to augment
the charting results.

Throughput is also an important metric in evaluat-
ing CDN performance. However, due to the nature of
our approach – leveraging DNS infrastructure for de-
lay performance – there is no direct way to extend the
methodology to throughput measurements. Therefore,
we acknowledge that this paper is limited to delay per-
formance only.

All the vantage points are treated equally in this pa-
per. This is not ideal, as the weight of a vantage point
should be proportional to the amount of client traffic
from its location. (Although the distribution of the van-
tage points themselves does reflect certain popularity –
for instance, developed countries have higher number
of vantage points – this is far from ideal.) Neverthe-
less, we do not regard this as a technical challenge – a
CDN operator (or any third party) with a large amount
of client information can easily incorporate traffic data
into the methodologies.

APPENDIX
Uncovering service behind akamaiedge.net

We conjecture type (c) (akamaiedge.net) provides a
different service from type (a) or (b). First, every query
for such a CNAME from a particular vantage point only
returns one IP address (no matter which vantage point
handled the query). Second, for a given CNAME, the
number of IP addresses it resolves to across all the van-
tage points is typically in the 20-100 range. For ex-
ample, e128.b.akamaiedge.net resolves to 74 unique IP
addresses in total. This is quite different from hun-
dreds (or thousands) of IP addresses seen with type
(a) CNAMEs, and also different from only a few seen
with type (b) CNAMEs. Third, when we combine all
the IP addresses discovered (from the 539 akamaiedge
CNAMEs and from our vantage points), we obtain more
than 36, 000 unique IP addresses, and this set of ad-

dresses is completely disjoint from the 11, 500 IP ad-
dresses found for type (a) CNAMEs.

Now we are ready to uncover the mysterious akamai-
edge.net network. We observe that akamaiedge.net also
uses a two-level DNS infrastructure. Among 900 DNS
servers handling the second level domains, about 200
have already appeared in the previous expanded list of
content servers from akamai.net. Note that all of these
200 servers appear among the expanded part, not from
the original discovered list of content servers. By ex-
panding and verifying the remaining 700 DNS servers,
we discover another 3, 000 new content servers. The IP
addresses of these new content servers share long pre-
fixes with those ∼23,000 content servers discovered pre-
viously. This strongly suggests that the content servers
from akamaiedge.net are very likely co-located with those
from akamai.net. Hence, putting them together, we
compile a list of more than 27, 000 content servers, which
we conclude is the complete Akamai global network.

However, this has yet to explain the more than 36, 000
IP addresses discovered from akamaiedge.net CNAMEs.
As a matter of fact, we are able to not only confirm that
almost all of the 36, 000 IP addresses belong to Aka-
mai, but also further expand the list to include more
than 150, 000 IP addresses. Apparently, Akamai is be-
hind these IP addresses, but the numbers don’t add up.
Where is the missing walrus?

Finally, two additional key observations lead us to a
reasonable explanation. First, very different from the
IP addresses obtained from akamai.net (type (a) ser-
vice), where multiple Akamai CNAMEs can map to the
same IP address, the addresses obtained from akamaiedge.-
net (type (c) service) are all exclusive. Second, very
different from the total 27, 000 IP addresses, where the
failure rate is always about 4-6%, IP addresses from
akamaiedge.net have much lower failure rate (only about
1%). Based on this mounting evidence, we conjecture
that Akamai is using virtualization technology behind
all the IP addresses for akamaiedge.net. Furthermore,
Akamai is providing an isolated virtualization environ-
ment to customers for dynamic content distribution.
Conceivably, virtualization is available only in limited
locations among all the Akamai deployments. (Please
refer to [6] for more details.)

REFERENCES
[1] H. Dewing, E. Daley, R. Whiteley, and A. Lawson,

“Inquiry Insights: Content Delivery Networks, Q4 2007,”
Forrester Research, Jan. 18, 2008.

[2] D. Rayburn, “CDN Market Getting Crowded: Now
Tracking 28 Providers In The Industry,” Business of
Online Video Blog, Sep. 24th, 2007.

[3] M. J. Freedman, E. Freudenthal, and D. Mazires,
“Democratizing Content Publication with Coral,”
USENIX NSDI, Mar. 2004.

[4] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson,
“Reliability and Security in the CoDeeN Content
Distribution Network,” USENIX Annual Technical
Conference, Jun. 2004.

[5] “Akamai Global Traffic Management,” http://www.-
akamai.com/html/technology/products/gtm.html.

[6] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring
and Evaluating Large-Scale CDNs,” Microsoft Research
Technical Report MSR-TR-2008-106, Aug. 2008.

[7] “Top 21 U.S. ISPs by Subscriber: Q2 2007,”
http://www.isp-planet.com/research/rankings/usa.html.

[8] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King:
Estimating Latency between Arbitrary Internet End
Hosts,” ACM IMW, Nov. 2002.

[9] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson,
“Measuring ISP Topologies with Rocketfuel,” IEEE/ACM
ToN, 12(1), Feb. 2004.

[10] D. Leonard, and D. Loguinov, “Turbo King: Framework
for Large-Scale Internet Delay Measurements,” IEEE
INFOCOM, Apr. 2008.

[11] K. L. Johnson, J. F. Carr, M. S. Day, and M. F. Kaashoek,
“The Measured Performance of Content Distribution
Networks,” Computer Communications, 24(2), Feb. 2000.

[12] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the Use
and Performance of Content Distribution Networks,” ACM
IMC, Nov. 2001.

[13] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy, “An Analysis of Internet Content Delivery
Systems,” USENIX OSDI, 2002.

[14] A.-J. Su, D. Choffnes, A. Kuzmanovic, and F.
Bustamante, “Drafting Behind Akamai (Travelocity Based
Detouring),” ACM SIGCOMM, Sep. 2006.

[15] M. Freedman, M. Vutukuru, N. Feamster, and H.
Balakrishnan, “Geographic Locality of IP Prefixes,” ACM
IMC, Oct. 2005.

[16] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T.
Anderson, A. Krishnamurthy, and A. Venkataramani,
“iPlane: an Information Plane for Distributed Services,”
USENIX OSDI, Nov. 2006.

[17] M. Zhang, Y. Ruan, V. Pai, and J. Rexford, “How DNS
Misnaming Distorts Internet Topology Mapping,”
USENIX Annual Technical Conference, Jun. 2006

[18] H. Ballani, P. Francis, and S. Ratnasamy, “A
Measurementbased Deployment Proposal for IP Anycast,”
ACM IMC, Oct. 2006.

[19] V. N. Padmanabhan, and L. Subramanian, “An
Investigation of Geographic Mapping Techniques for
Internet Hosts,” ACM SIGCOMM, Aug. 2001.

[20] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location
Problem,” IEEE/ACM ToN, 2000.

[21] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the
Placement of Web Server Replicas,” IEEE INFOCOM,
2001.

[22] S. Jamin, C. Jin, A. R. Kure, D. Raz, and Y. Shavitt,
“Constrained Mirror Placement on the Internet,” IEEE
INFOCOM, 2001.

[23] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman,
and B. Weihl, “Globally Distributed Content Delivery,”
IEEE Internet Computing, 2002.

[24] A. Vakali, and G. Pallis, “Content Delivery Networks:
Status and Trends,” IEEE Internet Computing, 2003.

[25] G. Peng, “CDN: Content Distribution Network,” Tech
Report, SUNY Stony Brook, 2003.

[26] A. K. Pathan, and R. Buyya, “A Taxonomy and Survey of
Content Delivery Networks,” Tech Report, Univ. of
Melbourne, 2007.

[27] J. Oberheide, M. Karir, and Z. M. Mao, “Characterizing
Dark DNS Behavior,” Proc. DIMVA, 2007.

[28] Z. M. Mao, C. Cranor, F. Douglis, M. Rabinovich, O.
Spatscheck, and J. Wang, “A Precise and Efficient
Evaluation of the Proximity between Web Clients and
their Local DNS Servers,” USENIX Annual Technical
Conference, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

