
Dapper: Data Plane Performance Diagnosis of TCP

Mojgan Ghasemi
Princeton University

mojgan@cs.princeton.edu

Theophilus Benson
Duke University

tbenson@cs.duke.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

ABSTRACT
With more applications moving to the cloud, cloud providers
need to diagnose performance problems in a timely manner.
Offline processing of logs is slow and inefficient, and instru-
menting the end-host network stack would violate the ten-
ants’ rights to manage their own virtual machines (VMs).
Instead, our Dapper system analyzes TCP performance in
real time near the end-hosts (e.g., at the hypervisor, NIC,
or top-of-rack switch). Dapper determines whether a con-
nection is limited by the sender (e.g., a slow server com-
peting for shared resources), the network (e.g., congestion),
or the receiver (e.g., small receive buffer). Emerging edge
devices now offer flexible packet processing at high speed
on commodity hardware, making it possible to monitor TCP
performance in the data plane, at line rate. We use P4 to pro-
totype Dapper and evaluate our design on real and synthetic
traffic. To reduce the data-plane state requirements, we per-
form lightweight detection for all connections, followed by
heavier-weight diagnosis just for the troubled connections.

1. INTRODUCTION
Public clouds need timely and accurate visibility into ap-

plication performance to ensure high utilization (to reduce
cost) and good performance (to satisfy tenants) [22]. Yet,
cloud providers must monitor performance within their own
infrastructure, since they cannot modify the end-host net-
work stack without violating tenant control over their own
VMs. Studies reveal that more than 99% of traffic in some
data centers is TCP traffic [7]. However, TCP measure-
ments collected in the network core would not have an end-
host perspective (e.g., of round-trip times) and would require
combining data from multiple switches because the two di-
rections of a connection may traverse different paths.

Instead, measurement at the “edge”—in the hypervisor,
NIC, or top-of-rack switch, as shown in Figure 1—offers
the best viable alternative. The edge (i) sees all of a TCP
connection’s packets in both directions, (ii) can closely ob-
serve the application’s interactions with the network without
the tenant’s cooperation, and (iii) can measure end-to-end
metrics from the end-host perspective (e.g., path loss rate)
because it is only one hop away from the end-host.

Fortunately, emerging edge devices offer flexible packet

VM 1

H
y
p

e
rv

is
o

r

NICVM 2

Tenant Edge Core

Figure 1: Dapper monitors performance at network edge

processing at line rate, in software switches [27], NICs [31],
and hardware switches [12] that are programmable using
languages like P4 [11]. New capabilities, such as flexible
parsing and registers that maintain state open up the possi-
bility of detecting and diagnosing TCP performance prob-
lems directly in the data plane. A major challenge for data-
plane connection diagnosis is finding a “sweet spot” that bal-
ances the need for fine-grained metrics for diagnosis, while
remaining lightweight enough to run across a wide range of
devices with limited capabilities.

This paper presents Dapper, a Data-Plane Performance
diagnosis tool that infers TCP bottlenecks by analyzing pack-
ets in real time at the network edge, as shown in Figure 2.
Dapper quantifies the contribution of the sender, network,
and receiver to poor end-to-end performance. Table 1 shows
examples of problems that can limit a TCP connection’s per-
formance. Identifying the entity responsible for poor perfor-
mance is often the most time-consuming and expensive part
of failure detection and can take from an hour to days in data
centers [8]. Once the bottleneck is correctly identified, spe-
cialized tools within that component can pinpoint the root
cause. To achieve this goal, we need to infer essential TCP
metrics. Some of them are easy to infer (e.g., counting num-
ber of bytes or packets sent or received), while others are
more challenging (e.g., congestion and receive windows).

Dapper analyzes header fields, packet sizes, timing, and
the relative spacing of data and ACK packets, to infer the
TCP state and the congestion and receive window sizes. A
unique challenge in a public IaaS clouds is that different ten-
ants run different versions of TCP, each possibly with tuned
parameters. Thus, our techniques must be applicable to a
heterogeneous set of TCP connections. The advantage of
a data-plane performance diagnosis, apart from line-rate di-

ar
X

iv
:1

61
1.

01
52

9v
1

 [
cs

.N
I]

 4
 N

ov
 2

01
6

\\\ Data plane (monitoring on edge)

Control plane (Dapper’s Diagnoser)

P4 program
TCP statistics

Figure 2: Dapper’s architecture has two parts: (1) data
plane monitoring on edge via P4, (2) diagnosis techniques
in control plane based on the collected TCP statistics

agnosis, is that the data plane can use this information for
quick decision making (e.g., load balancing for network-
limited connections). However, a data-plane monitoring tool
often has more resource constraints: limited state and limited
number of arithmetic and Boolean operations per packet. We
discuss design challenges and the necessary steps for Dap-
per to run in the data plane, including reducing the accuracy
of some measurements (e.g., RTT) to lower the amount of
per-flow state, as well as two-phase monitoring where we
switch from collecting lightweight metrics for all flows to
only collecting heavyweight metrics for troubled ones.

Roadmap: Section 2 explains the TCP performance bot-
tlenecks we identify and how to infer the metrics necessary
to detect them. Section 3 explains how Dapper diagnoses
performance problems from the inferred statistics. Section 4
explains how to monitor TCP connections in real time us-
ing commodity packet processors programmed using P4 [11,
3]. Section 5 discusses our two-phase monitoring to reduce
the memory overhead in the data plane. Section 6 evaluates
the overhead and performance of our system. Section 7 dis-
cusses related work, and Section 8 concludes the paper.

2. TCP PERFORMANCE MONITORING
A TCP connection may have bottlenecks at the sender,

receiver, or the network. In Table 1, we present several ex-
amples of performance problems that may arise at each lo-
cation. With many applications and TCP variants in a public
cloud, it is challenging to decide what minimal set of metrics
to collect that are both affordable (i.e., does not consume a
lot of resources) and meaningful (i.e., helps in diagnosis).
In this section, we discuss the metrics we collect to diag-
nose the performance bottlenecks at each component, and
the streaming algorithms we use to infer them.

We denote a TCP connection by a bi-directional 4-tuple
of server and client IP addresses and port numbers. We fo-
cus on the performance of the data transmission from the
server, where the server sends data and receives ACKs, as
shown in Figure 4. Hence, we monitor traffic close to the
server, for several reasons. First, being close to the server
enables us to imitate the internal state of the server’s con-
gestion control and monitor how quickly the server responds

Location Performance Problems

Sender slow data generation rate due to resource constraints, not enough data
to send (non-backlogged)

Network congestion (high loss and latency), routing changes, limited bandwidth

Receiver delayed ACK, small receive buffer

Table 1: TCP performance problems at each component

to ACKs. Second, if a connection is end-user facing (as op-
posed to east-west traffic in the data center), we do not have
access to the client’s edge, so would need to monitor near
the server. Finally, monitoring at one end reduces the over-
head and avoids redundancy as opposed to keeping per-flow
state at both ends. Note that for east-west traffic, a cloud
provider can enable monitoring at both ends of a connec-
tion, which would offer higher accuracy and better visibility
into the connection’s state by collecting more statistics on
the client-side (e.g., delay in sending ACKs).

2.1 Inferring Sender Statistics
Performance problems at the sender limit the TCP con-

nection’s performance; for example, an application that is
constrained by its host’s resources (e.g., slow disk or limited
CPU in the VM) may generate data at a lower rate than the
network or receiver can accept, or it simply may not have
more data to send; this application is referred to as non-
backlogged. To find such problems, we measure the ground-
truth by counting sent packets and compare it with the con-
nection’s potential sending rate, determined by the receive
and network congestion windows.

If we could directly monitor the TCP send buffer inside
the VM, we could easily observe how much data the appli-
cation writes to the buffer, how quickly the buffer fills, and
the maximum buffer size. In the absence of OS and appli-
cation logs from tenant VMs, we rely on two independent
metrics to see if the application is sending “too little" or “too
late”: (i) generated segment sizes, to measure if an applica-
tion is sending too little, and (ii) application’s reaction time,
to see if it is taking too long.

Inferring flight size to measure sending rate: Upon trans-
mission of new packets, we update the packet and byte coun-
ters for each connection. We also measure the connection’s
flight size to infer its sending rate (i.e., flight size

RT T). The flight
size of a connection is the number of outstanding packets—
packets sent but not ACKed yet—as shown in Figure 3, and
is inferred via examining the sequence number of outgo-
ing packets and the incoming acknowledgment numbers to
track how many segments are still in flight. In this figure,
the “send window” represents the available window to the
sender, that is, the maximum packets that the sender can
send before waiting for a new ACK; this window is limited
by both the RWND and CWND. In this example, the appli-
cation is not backlogged, because it has not fully used the
available window. We can see that flight size can at most be

2

sent, ACKed
sent, not
ACKed

 (in flight)

not eligible
to send

eligible to
send next

send window = min (CWND, RWND)

Figure 3: Tracking a TCP connection’s flight size

equal to send window.
Note that the flight size of a connection is an important

metric in diagnosis because it depends on the congestion
window, the receive window, and the application’s own data
generation rate (i.e., is the application backlogged?). We will
revisit this metric in Section 2.2.

Extracting MSS from TCP options: The segment sizes in
a connection indicate the amount of data that the sending ap-
plication generates. We infer MSS by parsing the TCP op-
tions exchanged during the three-way handshake, as shown
in Figure 4, in the SYN and SYN-ACK packets.

Measuring sender’s reaction time via cross-packet anal-
ysis: We define the sender’s reaction time to be the time
window between the arrival of a new acknowledgment and
the transmission of a new segment of data. The reaction
time evaluates the sending application’s data generation rate,
i.e., whether or not it is backlogged. Lower reaction times
indicate that the data was already processed and was just
awaiting an opportunity to be sent. We measure the reaction
time by using time-stamps of incoming acknowledgments
and outgoing packets. We compare the reaction time with
an empirically derived threshold, calculated based on the la-
tency between the edge and the VM.

Note that “cross-packet analysis” happens at the edge, thus
the reaction time consists of the application’s own data gen-
eration latency plus the communication latency between the
application and edge (i.e., latency in the hypervisor and vir-
tual switch). More importantly, the network latency does
not influence this metric. Also, notice that the edge acts as
the single point of observation, seeing both directions of the
flow to do cross-packet analysis. These two conditions are
not necessarily true on the switches in the core of network to
measure the sender’s reaction time since the packets could
have been delayed at earlier network hops—as opposed to
the application itself—or worse yet, taken different paths.

2.2 Inferring Network Statistics
Network problems cause poor performance in a TCP con-

nection. For example, in a congested network, the increased
packet loss and path latency cause the TCP congestion con-
trol to decrease the sending rate at the sender. The sender’s
reaction to congestion varies based on the congestion control
in use (e.g., Reno vs Cubic) and the severity of the conges-
tion itself. To determine and quantify the network limitation
in the performance of a TCP connection, we need to mea-
sure and compare its congestion window—how much the

Client Server

Application
Reaction
Time

Delayed
ACK

Figure 4: Tracking options, segment size, and applica-
tion reaction time for a simplex connection (server-client)

network allows the connection to send—against the receive
window—how much the receiver allows the connection to
send—and how much data the sender has available to send.

To infer a connection’s congestion window, we “imitate”
the VM’s congestion control algorithm by tracking flight
size, packet losses and their kinds, and duplicate ACKs. We
also track RTT and RTTvar to help pinpoint the effect of
network congestion, routing changes, and queuing delay on
TCP performance.

Inferring loss via retransmission: We calculate a connec-
tion’s loss rate by counting the lost and total packets in the
flow. In addition, we use a counter to track the duplicate
ACKs and use it to infer the kind of loss: fast-retransmission
(FR) is triggered after a fixed number of duplicate ACKs are
received (normally 3); however, a timeout is triggered when
no packet has arrived for a while (RTO). We track the se-
quence number of outgoing packets (i.e., packets sent by the
server) which helps us find the retransmission of previously
seen sequence numbers. Using the duplicate ACK counter, if
we see at least three duplicate acknowledgments before a re-
transmission, we treat it as a fast retransmission, otherwise,
we deduce that the loss was recovered by a timeout.

Estimating latency by passive RTT measurements: We
use Karn’s algorithm [21] to estimate SRTT, SRTTvar, and
RTO using a series of “RTT measurements”. An RTT mea-
surement is the time between when a segment was sent and
when its acknowledgment reached the sender. For any con-
nection, upon transmission of a new segment, we create a
(time-stamp, sequence number) tuple and maintain it in a
queue. Upon arrival of an ACK, we inspect the queue to
see if any of the tuples are acknowledged by it. If so, we
create an RTT measurement and use it to update the latency
statistics via Karn’s algorithm.

3

Note that a retransmitted packet cannot be used as an RTT
measurement, because the corresponding ACK cannot be
correctly mapped to a single outgoing time-stamp. Also, if a
connection has multiple outstanding packets, the queue will
have multiple tuples, i.e., the length of the queue grows with
the flight size. Finally, if an incoming ACK acknowledges
multiple tuples (i.e., a delayed ACK) we de-queue multiple
tuples but only create one RTT measurement, from the most
recent tuple, to exclude the effect of delayed ACK on RTT.

Estimating congestion window via flight size and loss: It
is challenging to estimate a connection’s congestion window
outside the VM’s networking stack due to following rea-
sons: (1) Many TCP variations: There are many different
TCP congestion control algorithms used today (e.g., Reno,
New Reno, Cubic, DCTCP). Some are combined with tun-
ing algorithms (e.g., Cubic combined with HyStart to tune
ssthresh) or have configurable parameters (e.g., initial win-
dow). (2) Thresholds change: ssthresh is the threshold
that separates slow-start (SS) from congestion-avoidance (CA)
in the TCP state machine and is initially set to a predefined
value. However, the Linux kernel caches the ssthresh value
to use it for similar connections in the future. Also, ssthresh
changes throughout the life of a connection (e.g., under packet
loss). Therefore, if the full history of a connection (and even
past connections!) is not observed, ssthresh is unknown,
making it impossible to detect transitions from SS to CA
based on the ssthresh threshold.

In the presence of these challenges, we rely on these TCP
invariants to infer congestion window: (1) The flight size of
a connection is bounded by congestion window, as shown in
Figure 3. We denote this lower-bound estimate of congestion
window with in f _cwnd. In a loss-free network, in f _cwnd
is a moving maximum of flight size of the connection. Note
that in the absence of loss, if the connection’s flight size de-
creases, it is either due to the sender producing less data (i.e.,
not fully utilizing the window) or the receiver’s limited re-
ceive window; hence, in f _cwnd does not decrease. (2) If
a packet is lost, we adjust in f _cwnd based on the nature of
loss, a timeout resets it to IW and a fast-retransmit causes a
multiplicative decrease.

Estimating congestion window based on these invariants
makes in f _cwnd “self-adjustable”, that works regardless of
TCP variant and configuration, and is calculated according
to Algorithm 1. Algorithm 1 consists of a while loop that in-
spects every new packet. If a new segment is transmitted and
the connection’s flight size grows beyond in f _cwnd, we up-
date in f _cwnd to hold the new maximum value of flight size.
In case of retransmissions (loss), we decrease in f _cwnd by
the multiplicative decrease constant, C, if loss is recovered
by fast recovery. Otherwise, in f _cwnd is reset to initial win-
dow if recovered by a timeout. In this algorithm, we assume
the cloud provider knows the value of C and IW , since they
can be easily inferred, either indirectly via observing how
large the first window is and how it changes after a loss, or
directly via tools such as Nmap [2].

Algorithm 1: Estimating in f _cwnd
Input: multiplicative decrease factor (C), initial

window (IW)
Output: in f _cwnd

1 while P←− capture new packet do
2 if P is new segment and flight size > in f _cwnd then
3 in f _cwnd←− flight size

4 else if P is retransmitted then
5 if fast retransmit then
6 if first loss in fast recovery then
7 in f _cwnd←−C×in f _cwnd

8 else if timeout then
9 in f _cwnd←− IW

Note that in f _cwnd as estimated by Algorithm 1 does not
require full knowledge of connection’s history, thresholds,
or the congestion control algorithm, and is only dependent
upon measuring the connection’s flight size and loss, thus
solves the challenges above without tenant’s cooperation1.

2.3 Inferring Receiver Statistics
The receiver-side of a TCP connection can limit the flow

by decreasing its advertised window (i.e., RWND) or slow-
ing down the rate of acknowledgments [35] to control the
release of new segments.

Tracking RWND per-packet and per-connection : To quan-
tify the receiver limitation in a TCP connection, we track
the advertised RWND value per-packet, reflecting how much
buffer is available on the client. We also track the per-connection
agreed upon window scaling option during the TCP hand-
shake, as shown in Figure 4, which is used for scaling RWND.

Inferring delayed ACKs via RTT samples: When an in-
coming ACK acknowledges multiple tuples in the queue, the
ACK must be a delayed ACK, as the client is acknowledg-
ing multiple segments at once. When we de-queue tuple(s)
based on an incoming ACK, we count and average the num-
ber of de-queued tuples per ACK to reflect the effect of de-
layed ACK.

Summary: Figure 5 summarizes how Dapper updates a TCP
connection’s performance statistics while processing a new
packet. The packets are first hashed on the four-tuple to
either initialize a new flow, or read the existing statistics.
Then, based on the direction of the packet, the relevant header
fields are extracted and used to update the metrics. The blue
boxes show the analytics performed to keep per-flow state
(e.g., update flight size) and the pink diamonds show the
conditions used to decide which state to update.

1To keep our heuristics general across all TCP variants, we do not
rely on selective acknowledgments.

4

directi
on?

 Update
counters,

flightsize,
inf_cwnd.
enQ for

RTT, etc.

outgoing incoming

hash

initialize

new
flow?

load stats

direction

reset
dupACK,

track RWND,
deQ

samples,
etc.

Timeout
retx

FR retx

new
seq?

dupACK
==3 ?

yes

no (retx)

yes

new
ack?

dupACK++

no

yes no

yesno

Figure 5: Dapper’s packet-processing logic

3. TCP DIAGNOSIS TECHNIQUES
In this section, we describe how Dapper uses the statis-

tics gathered by the streaming algorithms discussed in sec-
tion 2. The high-level objective of the diagnosis techniques
is to troubleshoot a connection’s performance limitation.

Diagnosing Sender Problems: Our goal is to find if the
sender-side is not limiting the connection’s performance (back-
logged), or limiting the sending rate via not having enough
data to send or taking too long to produce it (non-backlogged).
1. Exponential sending rate indicates a backlogged sender:
On transmission of new segments, we first examine the con-
nection’s macroscopic behavior, i.e., the sending rate, and
check to see if it is growing exponentially to infer if the con-
nection is in slow start. More accurately, we compare the
relationship between ACKs and the data packets to see how
many packets the sender transmits after a new ACK. If send-
ing rate grows exponentially, we know the connection is not
sender-limited. Otherwise, we attempt to understand if the
connection is sender-limited by checking the next heuristics.
2. If the sender is backlogged, it will “completely” use the
send window: When sending rate does not grow exponen-
tially, the connection could either be in congestion avoid-
ance with a backlogged sender, or it could suffer from a
non-backlogged sender, producing less data than CWND.
This heuristic checks to see if the connection’s flight size
is consistently less than the allowed window to send, de-
termined by the minimum of RWND and CWND, i.e., if
f lightsize<min(in f _cwnd,RWND). If so, the connection’s
performance is limited because the sending application does
not send more, not because it’s not allowed to.
3. Sending less than allowed, or later than allowed, indi-
cates a non-backlogged sender: Here we examine the con-
nection’s microscopic behavior to see if the connection is

0 10 20 30 40 50 60
Time (ms)

0

10

20

30

40

50

60

W
in

do
w

 (M
SS

)

cwnd

app1, f2
f1
=C

app2, C<f2
f1
<1

app3, 1¸f2
f1

Figure 6: Flight size before and after loss

under-utilizing the network, not concerning the “number”
of packets in flight like the previous heuristic, but instead
focusing on the “size” and “timing” of packets. More con-
cretely, we check to see if a connection is sending packets
that are smaller than MSS, or if the application’s reaction
time (i.e., data generation time) is larger than an empirically
derived threshold for backlogged applications. If either of
these conditions are met, we conclude that the application is
non-backlogged, hence the connection is sender-limited in-
dicating that the sender is either not generating enough data
to fill up a whole packet, or not responding almost immedi-
ately when it is allowed to send.
4. How the flight size changes during a loss recovery gives
us a clue of how backlogged the sender is: In addition to the
heuristics above, during loss recovery a connection reveals
some information about its internal state2. As a reminder,
fast-recovery causes the congestion window to decrease by
a multiplicative factor, C.

Consider a connection not limited by receiver, and assume
that the sending application’s data generation rate remains
unchanged during the network loss. We denote the flight size
of the connection before loss by f1 and after the loss by f2.
Figure 6 shows three example scenarios, where loss happens
at 30ms, prompting CNWD to decrease by half. The f2

f1
ratio

gives us the following insights: if flight size is closely track-
ing CWND, f2

f1
=C, the sender is backlogged (app 1); if the

connection was not fully using the CWND before loss but is
backlogged after the loss, C < f2

f1
< 1 (app 2); finally, if the

flight size remains unchanged the sender is not backlogged
(app 3). Note that in these examples we assume the state of
the sender remains unchanged during the loss recovery.

Diagnosing Network Problems: Our goal is to determine
if the network is restricting TCP performance, either due to
limited bandwidth (congestion window limited), high packet
loss rate, or increased latency due to problems such as queu-
ing delay or routing problems.

2This heuristic can be treated as a bonus, and the diagnosis algo-
rithm does not rely on seeing a loss.

5

1. Small congestion window hurts TCP’s performance: When
the network has performance constraints, for example lim-
ited network bandwidth, the congestion window will limit
the rate of the connection, that is: flight size ≤ in f _cwnd <
RWND. Upon a packet retransmission, if loss causes the
in f _cwnd value to drop below the RWND, we deduce the
connection is limited by network.
2. Increased network path latency slows TCP’s rate: The
sending rate of the connection is a function of both the flight
size and RTT; the sender can only increase the window after
a new ACKs arrives, which usually takes an RTT. To track
the impact of network latency on TCP performance, we use
the RTT measurements as explained in section 2. The cloud
provider can either define an “expected RTT” per TCP con-
nection based on SLAs, or use the minimum RTT sample
per-flow as the baseline. To diagnose path latency problems,
we compare the RTT values with the expected RTT to detect
if a connection’s latency is acceptable.

Diagnosing Receiver Problems: Our goal is to find if the
receiver is restricting TCP performance, either by offering a
small receive buffer (receive window), or by delaying ACKs.
1. Small receive window hurts performance: Upon updat-
ing the RWND and in f _cwnd values, this heuristic com-
pares them with the current flight size to see if the connec-
tion’s sending rate is receiver-limited, that is: flight size ≤
RWND < in f _cwnd. If so, the connection is diagnosed as
receiver-limited.
2. Delayed acknowledgment hurts performance: The re-
ceiver can limit TCP performance by sending ACKs with a
delay; delayed ACKs has been shown to cause issues in dat-
acenters [35]. When the client sends ACKs with a delay, for
example, sending acknowledgments for every other packet,
the sender’s opportunity to increase its window is halved3.
For each connection, we measure the average number of
RTT samples freed by each new ACK and if the average is
greater than one, we diagnose the connection as receiver-
limited due to delayed acknowledgment.

4. DATA-PLANE MONITORING
In this section, we describe how Dapper tracks TCP con-

nections in the data plane and discuss the principles behind
our target-independent solution using P4. We outline the
P4 features (e.g., metadata) that enable us to monitor TCP
connections according to Figure 5 (Section 4.1); then, we
discuss the target-specific resource constraints and how to
mitigate them (Section 4.2).

4.1 TCP Monitoring Prototype in P4
P4 is a programming language that allows us to express

how packets are processed and forwarded in a target-independent

3Note that the congestion window on sender-side opens up upon
receiving each new ACK, as every ACK is a sign that a packet has
left the network, hence the network can receive more.

program, therefore, our P4 prototype can run in a public
cloud on a variety of targets, as long as at least one of the
elements at the edge (the switch, the hypervisor, or the NIC)
can run P4 programs.

To monitor TCP connections in the data plane in real time,
we need to extract and retain packet header information (P4’s
flexible parsing), carry information across multiple stages of
packet processing (P4’s metdata), and store state across suc-
cessive packets of the flow (P4’s registers). Furthermore, to
realize the logic in Figure 5, we need to perform specific
operations on each packet, shown with blue boxes (P4’s ta-
bles and actions) and check test conditions based on both
the packet headers and the flow state to invoke the relevant
tables, shown by pink diamonds (P4’s flow control).

1. Extracting headers and options via flexible parsing:
Using header definitions, we identify the relevant header fields
in a packet. In our prototype we assume the TCP packets
have Ethernet, IPv4, and TCP headers, although this can be
easily extended to include other protocols (e.g., IPv6). The
following snippet shows some relevant TCP headers. In ad-
dition, we provide a parser that extracts headers (e.g., source
and destination IP from the IP header).

header_type tcp_t {
fields {

srcPort : 16;
dstPort : 16;
seqNo : 32;
ackNo : 32;
...
}

}

P4 models the parser as a state machine represented by a
parse graph. The parsed headers need to be “de-parsed”, i.e.,
merged back, to a serial stream of bytes before forwarding.
TCP options require TLV (Type-Length-Value) parsing. For
parsing options, we use “masks” to identify the “type” (e.g.,
type 2 represent MSS), then a parser is called to extract that
option knowing its “length” (e.g., parse_mss for MSS in the
snippet below) which returns the control back to the original
parser when done. This creates a loop in the parsing graph
causing the exact de-parsing behavior to be undefined. To
solve it, we impose a fixed order for de-parsing, by using the
pragma keyword as the following code snippet shows. We
will use this extracted MSS value in the subsequent parts.

@pragma header_ordering ethernet ipv4 tcp options_mss
options_sack options_ts options_nop options_wscale
options_end

parser parse_tcp_options {
return select(mymeta.opt_counter, current(0,8)) {

...
0x0002 mask 0x00ff : parse_mss;
...

}
}

2. Keeping per-flow state in registers: Registers are state-
ful memories, which are essential to Dapper because they

6

maintain the per-flow state as it gets updated after process-
ing each packet. Registers consume resources on the tar-
get, hence are a major limitation in running our solution on
specific targets, therefore we will minimize the required per-
flow state to ensure our program runs on commodity hard-
ware in Section 5.

P4 registers can be global, referenced by any table, or
static, bound to a single table. The following code shows
one of our global registers, MSS, as an array of 16-bit values,
and instance_count is the number of entries in the flow
table. Each packet is hashed to find its flow index in the reg-
ister array. We will explain our bi-directional flow hashing
in more details shortly.

register MSS {
width : 16;
instance_count : ENTRIES;

}

When tracking a TCP connection for diagnosis, some reg-
ister values depend on the value of other registers; for ex-
ample, only by comparing a packet’s acknowledgment with
previous ACKs of the flow can we detect a duplicate ACK.
To update such dependent registers, we have to read other
register(s), test conditions, and finally update the target reg-
ister.

3. Carrying information per-packet via metadata: Meta-
data is the state associated with each packet, not necessarily
derived from the packet headers, and can be used as tem-
porary variables in the program. We use metadata to carry
the information belonging to the same packet from one table
to the other. The code below shows the most widely used
metadata in our program, flow_map_index, which is the
flow’s index produced by hashing. This metadata carries the
index over to the subsequent tables, each using it to index
their registers for read/write. Below, we show a code snippet
for declaring metadata field named flow_map_index where
FLOW_MAP_SIZE indicates its width in bits. In the next sub-
section, we explain how we use this metadata in hashing.

header_type stats_metadata_t {
fields {
flow_map_index : FLOW_MAP_SIZE; // flow’s map index
...
}

}
metadata stats_metadata_t stats_metadata;

Some metadata has special significance to the operation of
the target (i.e., the standard intrinsic metadata). In particular,
we use the target’s ingress_global_timestamp as the ar-
rival time of the packet, which is necessary to infer latency
metrics such as the sender’s reaction time and SRTT.

4. Bi-directional hashing using metadata and registers:
As discussed earlier, our streaming algorithm must see both
directions of traffic to capture our cross-packet metrics, e.g.,
application reaction time. To do this, we need to hash both
directions to the same index and process them as one en-

tity. Unfortunately, P4 provides no primitives or methods
for hashing both directions to the same index—no symmet-
ric hashes. Although some targets may allow configuring
the hash function through run-time APIs, this support may
vary across targets [3]. Therefore, we build our own sym-
metric hash using P4’s default hash algorithm, e.g., crc32,
by defining two sets of headers to hash on, with one in the
reverse order of the other. In other words, one direction is
hashed based on (src IP, dst IP, src Port, dst Port) fields, and
the reverse direction is hashed on (dst IP, src IP, dst Port, src
Port) fields. To keep the direction’s hash function consistent,
we use a simple and consistent comparison of the two IPs:
if srcIP > dstIP, we hash the packet header in the former
order, otherwise we hash the packet headers in latter order.
This guarantees that each side of packet stream gets consis-
tently hashed by one of these hash functions, but results in
the same index value per flow.

5. Realizing operations using actions and tables: To re-
alize the blue boxes in the flowchart of Figure 5, P4 tables
and actions are used. A P4 table defines the fields to match
on and the action(s) to take, should the entry match. P4 ta-
bles allow us to express different sets of match-action rules
to apply on packets; for example, the set of actions for an
outgoing packet differs from incoming packets. Further-
more, some tables could be dedicated to monitoring while
others are dedicated to forwarding packets (e.g., ipv4_lpm
and forward). A fundamental difference between our mon-
itoring tables from regular forwarding tables in P4 is that
our monitoring tables have a single static entry that matches
on every packet —hence, have no match field. In contrast,
ipv4_lpm is a forwarding table that uses longest prefix match-
ing to find the next hop. The following code snippet shows
two of Dapper’s tables, the lookup table, that hashes every
packet to find its flow index, and the init table that initial-
izes the flow upon observing its first packet (e.g., saves the
extracted MSS value in the MSS register array, at the flow’s
index).

table lookup{
actions {

lookup_flow_map;
}

}
table init{

actions {
init_actions;

}
}

action lookup_flow_map() {
modify_field_with_hash_based_offset(stats_metadata.
flow_map_index, 0, flow_map_hash, FLOW_MAP_SIZE);
}

action init_actions() {
register_write(MSS, stats_metadata.flow_map_index,

options_mss.MSS);
...

}

Actions in P4 are declared imperatively as functions, in-

7

side the tables. Actions can use registers, headers, and meta-
data to compute values. An example action is register_write,
which takes a register, and index, and a value as input, and
sets the value of the register array at the index accordingly.
Actions are shown with red color in our code snippets.

6. Conditions via control-flow: The control flow of a P4
program specifies in what order the tables are to be applied.
Inside the control segment, we can “apply” tables and test
conditions. The choice of which block to execute may be
determined by the actions performed on the packet in earlier
stages. The control flow is what enables us to design the
pipeline and implement the conditions (pink diamonds) in
P4 as the flowchart shows in Figure 5.

In the “widely-supported” P4 specification [3], conditional
operations are restricted to the control segments of program;
that is, we cannot have if-else statements inside a table’s
logic. Fortunately, P4 offers metadata, which can be used as
temporary variables in the program. The metadata gives us
an opportunity to read the current value of conditional reg-
isters inside an earlier table—the “loader”—in the pipeline,
store their values in the metadata, test the conditions in the
control section, and apply the appropriate set of tables con-
ditionally. Note that we need the “loader” table because of
the current restrictions in P4 that allows conditions only in
the control segment.

control ingress {
if (ipv4.protocol == TCP_PROTO) {

if(ipv4.srcAddr > ipv4.dstAddr) {
apply(lookup);

}else{
apply(lookup_reverse);

}
if ((tcp.syn == 1) and (tcp.ack == 0))//first pkt

apply(init);
else

apply(loader);
if (ipv4.srcAddr == stats_metadata.senderIP){

if(tcp.seqNo > stats_metadata.seqNo){
apply(flow_sent);
if(stats_metadata.sample_rtt_seq == 0)

apply(sample_rtt_sent);//"temp" has the new
flightsize

if(stats_metadata.temp > stats_metadata.mincwnd)
apply(increase_cwnd);

}else{
if(stats_metadata.dupack == DUP_ACK_CNT_RETX)

apply(flow_retx_3dupack);
else

apply(flow_retx_timeout);
}

}
else if(ipv4.dstAddr == stats_metadata.senderIP) {

if(tcp.ackNo > stats_metadata.ackNo){
apply(flow_rcvd);//new ack
if(tcp.ackNo >= stats_metadata.sample_rtt_seq and

stats_metadata.sample_rtt_seq>0){
if(stats_metadata.rtt_samples ==0)

apply(first_rtt_sample);
else

apply(sample_rtt_rcvd);
}

}else
apply(flow_dupack);//duplicate ack

}
}
apply(ipv4_lpm);
apply(forward);

}

4.2 Hardware Resource Constraints
In this section, we explain our design choices to monitor

connections in P4. These choices stem from a variety of
restrictions, in particular, the limited resources on hardware
switches, missing features in the P4 spec, and the diversity
of hardware targets, which would require us to design for the
least common denominator among the supported features.

1. Handling hash collisions: We use 32 bits for hashing
in our prototype; regardless, collisions are often a concern
in hash tables. In our software implementation, we handle
collisions in the hash table by “hash-chaining”: we store the
four tuple key of the connection and create a linked-list of
flows in the same index with different keys. However, since
memory in hardware is limited, we decide to not store a con-
nection’s tuple. Still, if collisions go undetected they may
pollute the accuracy of collected statistics. Hence, it is use-
ful to assess if the accuracy of a connection’s statistics has
been compromised. Therefore, we perform basic checks on
the packet’s sequence number versus the flow’s previously
sent sequence numbers and available windows (i.e., does the
sequence number fall within the acceptable window?). This
comparison requires additional tables or registers per-flow,
but can store the result of conditions in a Boolean variable,
named “sanity check”. The sanity check can be queried from
the data plane along with the connection metrics to indicate
whether collected statistics are reliable for diagnosis.

2. Keeping one RTT sample at a time: As discussed in
Section 3, to accurately track the connection’s RTT, we main-
tain a queue of tuples based on the outgoing packets, where
each tuple is (sequence number, time-stamp). The received
ACKs are compared to the tuples of the queue to make an
RTT measurement. Since the queue of tuples grows with the
flow’s flight size, it increases the amount of state per-flow in
our P4 program. Because the hardware resources on a switch
are limited, we limit the number of outstanding RTT tuples
in our P4 program to one at a time, per-flow: we only sample
an outgoing packet for RTT if the flow’s queue is empty.

3. Multiple accesses per register array: Our program ac-
cesses some registers from multiple points to use them in test
conditions; e.g. duplicate ACK count register is read in the
loader table and used for identifying the kind of loss, and
upon a new duplicate ACK another table updates it. Cur-
rently, conditional operations in P4 are restricted to the con-
trol segments. Thus we cannot avoid accessing some reg-
isters in multiple tables. Unfortunately, accessing a register
from multiple tables limits the processing rate. However, the
ternary operator (?:) will be supported in the next P4 ver-
sion [1], allowing us to perform simple conditional assign-
ments, eliminating the need for global registers, and permit-
ting our solution to run at line rate.

4. Relying on control plane to scale RWND: In TCP, the
advertised RWND should be shifted by the window scale

8

(as negotiated in handshake) to calculate the actual receive
window. However, most P4 targets can only “shift” by a
“constant” value [3]. So, we instead record both values and
allow the control plane to query both and perform the shift.

5. Foregoing RTTvar: Calculating RTTvar involves captur-
ing the absolute difference of the smoothed moving average
RTT (SRTT) and the current RTT sample (RTT). This differ-
ence can be captured via an abs operator or by introducing
a new comparison test, i.e., a new pipeline stage. Unfortu-
nately, the P4 specification does not support the abs opera-
tor and adding a new stage impacts the processing rate of our
implementation to gain a single metric. By default, Dapper
does not include this stage but can be enabled optionally.

5. TWO-PHASE TCP MONITORING
Our goal in this section is to lower the cost of monitor-

ing and diagnosing TCP connections. We present a two-
phase monitoring technique to decrease the amount of state
required. The first phase monitors all connections continu-
ously but only collects low-overhead metrics, enough to de-
tect but not diagnose performance problems. When a con-
nection meets the “badness” criterion, heavier-weight moni-
toring is enabled to diagnose the poor performance.

Phase 1: Lightweight detection: In the first phase, we col-
lect lightweight metrics that suffice to “detect” the existence
of performance problems, based on a badness criterion. The
statistics used in the first phase must be: 1. lightweight to
maintain, ensuring that the continuous monitoring of con-
nections in the data plane is cheap, and 2. general enough
to capture the badness of the flow, regardless of the compo-
nent limiting the performance. We use the average rate of
the flow as an indicator of how well it’s performing.

To maintain the average rate of flow, we keep three reg-
isters: 1. init_time, the time-stamp when monitoring be-
gan, 2. bytes_sent, total bytes sent so far, and 3. up-

date_time, the time-stamp when the flow was updated last.
The control plane can query these states per-flow and find the
connections that look troubled based on a cloud-wide tenant-
specific threshold4. Upon observing low rate (or when tenant
complains), the cloud provider can turn on the heavy-weight
monitoring mode to do diagnosis.

Phase 2: Diagnosis of troubled connections: The second
phase is “diagnosis”, where we collect heavyweight metrics
for a troubled connection to shed light on the component that
is hindering the flow’s performance. These metrics include
the complete set of TCP statistics (discussed in Section 2)
and our diagnosis techniques (discussed in section 3). This
phase consumes more state on the switch, but note that it is
only turned on after a problem is detected, hence the switch
state consumption overall decreases. The two-phase moni-
toring can be thought of as a “long and narrow” table (all

4If the tenant’s traffic is not crossing the WAN.

flows, few metrics), followed by a “short and fat” table (few
flows, many metrics).

There are some challenges with inferring TCP metrics
midstream: First, the TCP constants, in particular MSS and
window scale are exchanged once, during the handshake.
Second, the flow counters (e.g., packets sent, ACKed, or in
flight) are unknown. This results in errors in the inferred
value of flight size, which is also used to estimate in f _cwnd.

Our solution to these challenges is two fold: 1. Parse and
keep the TCP options during the handshake for all the flows
in the first phase, in case they are needed later. This approach
provides high accuracy but requires more data-plane state.
2. Infer them midstream, only when necessary. Of course,
inferring constants midstream reduces the memory overhead
at the expense of accuracy. To infer MSS from midstream,
we need to keep track of the largest segment sizes seen so far.
To infer the window scaling option midstream we track the
flight size and the unscaled RWND as advertised in received
packets. We use the TCP invariant that “the flight size of a
connection is limited by the receive window”, hence we can
estimate the lower-bound window scaling factor:

flight size≤ RWND ·2scale

dlog2
flightsize
RWND

e ≤ scale (1)

Finally, to infer in f _cwnd, we rely on flight size, which it-
self is inferred from tracking sequence numbers of outgoing
packets and incoming ACKs midstream. We will evaluate
the accuracy of these metrics to show how close to actual
values the accuracy of midstream inferred metrics get.

6. EVALUATION
In this section we evaluate the overhead of our P4 proto-

type for hardware switches and our C prototype for hyper-
visors (Section 6.1). Then we use the software prototype to
validate the accuracy of our diagnosis algorithm using syn-
thetic traffic (Section 6.2). Next, we showcase Dapper in
the wild by analyzing CAIDA packet traces (Section 6.3).
Finally, we demonstrate the trade-offs in accuracy and over-
head in the P4 design.

6.1 CPU and Memory Overhead
We evaluate Dapper’s overhead along two dimensions:

memory utilization on hardware switches, and CPU Utiliza-
tion on hypervisor or vswitch; this is mainly because switches
operate at line rate but are constrained for memory, while
software solutions are not often constrained by memory, but
by CPU utilization. Dapper’s software prototype is imple-
mented in C and uses libpcap to capture packets.
Memory in hardware: In single-phase mode, our P4 pro-
totype keeps 67 bytes of state for each connection (i.e., 16
four-byte registers to keep the flow state, a two-byte register
to track MSS, and a one-byte register for scale). In addition,
40 bytes of metadata are used to carry a packet’s information

9

100 500 1000 5000 10000
Number of connections

0
100
200
300
400
500
600
700

St
at

e
on

 th
e

sw
itc

h
(K

B
)

single-stage
two-stage, 10% troubled
two-stage, 20% troubled

Figure 7: Required state on switch in single vs two-phase
monitoring, with 10% and 20% troubled connections

0 2000 4000 6000 8000 10000
Number of connections (k)

0
2
4
6
8

10
12
14

E
xp

ec
te

d
co

lli
si

on
 r

at
e

(%
)

N = 65,536
N = 131,072
N = 262,144
N = 524,288

Figure 8: Expected collision rate vs number of flows (k)
for different table sizes (N).

across tables. In a typical data center, a host can have 10K
connections [35], which results in 670 KB of state required
to track their state. In the two-phase monitoring prototype,
as described in section 5, we use the average rate of flows
as the badness factor in the first stage, which would impose
about 16 bytes per flow in the first stage. Figure 7 shows the
amount of state needed for single-phase monitoring, as op-
posed to two-phase monitoring with 10% and 20% troubled
connections.

As more connections are monitored, the expected rate of
collision in the hash table increases. Figure 8 shows the ex-
pected collision rate per number of flows (k), for varying
sizes of tables (N). Assuming the N hash values are equally
possible, the probability that a flow A shares the same index
with flow B is 1

N . So, the probability that the other k-1 flows
will not share the same index is (1− 1

N)
k−1, resulting in the

expected likelihood of collisions of 1− (1− 1
N)

k−1. Thus, to
track 10K connections with a collision rate of less than 4%,
we need the table size to be at least 262,144 (218), which
results in less than 18 MB space on the switch.
CPU in software: We measure the CPU overhead by con-
necting two servers to a single switch and starting parallel

1
10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00

Aggregated Bandwidth (Mbps)

0

5

10

15

20

25

30

A
ve

ra
ge

 C
PU

 %

Figure 9: CPU per aggregate bandwidth processed

init
outgoing

init
incoming

update
outgoing

update
incoming

Packet type

0
1
2
3
4
5
6
7
8

C
PU

 c
yc

le
s t

o
pr

oc
es

s

Figure 10: CPU cycles to process each type of packet,
allocation and initialization impact first packets

TCP flows between them and measuring CPU using top.
The server machines have Xeon e3-1630 V3, 4 core, 3.4
GHZ processors. All flows are initially established (i.e.,
completed the TCP handshake) and have the average rate
of 1 Mbps. Figure 9 shows the CPU consumption versus the
aggregate bandwidth processed. Dapper’s CPU consump-
tion is close to approaches that use near-real time polling
frequency (e.g., [35] at 50ms frequency).

In Figure 10, we quantify the CPU processing require-
ments for different packet types. The first packet of a flow
usually takes longer to process, because Dapper must allo-
cate and initialize flow state and parse packet options that
require extra CPU cycles. Further, the first outgoing packet
is used for creating the first tuple for RTT measurement. The
variations in the cycles are caused by several reasons: First,
our software prototype’s flowtable is a hash table with hash-
chaining, thus, in case of a collision, the flow statistics are
maintained in a linked-list; incurring the extra overhead of
linked-list traversal for collisions. Second, for retransmit-
ted packets or duplicate ACKs, the flow state needs further
updates. Finally, packets used for RTT measurement incur
extra processing.

6.2 Diagnosis Accuracy

10

0 2 4 6 8 10
Loss rate (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
 a

cc
ur

ac
y

Figure 11: Accuracy vs severeness of problem

We measure the accuracy of our diagnosis method by sys-
tematically creating TCP connections with known problems
and comparing the diagnosis results with the ground truth.
We create a server-client connection with the client request-
ing a 1MB file over a link with 1Mbps bandwidth and 50ms
round-trip time. We then create the following problems in
the connection and repeat the experiments 100 times:
1. Sender-Limited: We emulate a resource bottleneck for
the server, e.g., slow disk or busy CPU, by making the server
wait for T seconds before transmitting each data packet. Higher
T indicates more severe problems. We also emulate non-
backlogged servers by limiting the transmitted segment sizes
to less than an MSS.
2. Receiver-Limited: We create receiver-limited connections
by changing socket options (using Linux’s setsockopt) to
limit the client’s receive buffer size, socket.SO_RCVBUF.
3. Network-Limited: We use the Gilbert-Elliot model [19]
to emulate micro-bursts during network congestion: a con-
nection can be in either a good (no network congestion) or
bad (network congestion) state. To emulate the bad state, we
generate bursty losses at a rate of 1% to 10% for 2 seconds.
We assume that losses in the good state are negligible.

For each problem shown in Table 2, we measure “sensi-
tivity” and “accuracy”: the true positive rate (TPR) is the
fraction of correctly diagnosed tests, showing the sensitivity
to each problem, and diagnosis accuracy is the fraction of
time Dapper correctly classified the connection to be limited
by that problem. The initial results are promising, Dapper
achieves an average accuracy of 94%; Dapper’s accuracy is
less than 100% because the ability to detect a problem is pro-
portional to its severity. Figure 11 shows an example prob-
lem where the severity changes from low (1% loss) to high
(10% loss), increasing the average accuracy of diagnosis.

6.3 Analyzing CAIDA Traces
In the absence of traces from a public cloud, we use CAIDA

traces collected on Equinix-Chicago [5] to showcase Dap-
per, by assuming that the applications that produced this traf-
fic have now moved to the cloud. We preprocess the trace by
eliminating connections with less than 10 packets in either

Table 2: Dapper’s Diagnosis Sensitivity and Accuracy
Problem TPR Avg Accuracy

Sender-Limited 98% 95%
Receiver-Limited 96% 94%
Network-Limited 94% 93%
Sender-Network-Limited 100% 95%
Receiver-Network-Limited 100% 93%

0.0 0.2 0.4 0.6 0.8 1.0
Normalized duration of problem

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

No Limit
Sender Limited
Receiver Limited
Receiver-Network Limited
Sender-Network Limited
Network Limited

Figure 12: Diagnosis Results for CAIDA traces

direction. A total of 244,185 flows are considered in this
study. We make one modification in Dapper to account for
the fact that the packet traces are collected from within the
network, rather than the edge: we turn off inferences based
on application reaction time because it cannot be reliably
captured in the core of the network.

In Figure 12, we present a CDF of the normalized fraction
of time each class of performance problems limits a connec-
tion. Since the bottlenecks in a connection may change over
time, we present the CDF of normalized duration of bottle-
necks. We observe that: 1. 99% of flows spend less than
1% of their life in the no-limit state; this means that 99% of
flows have at least one bottleneck in more than 99% of their
lifetime. 2. Although sender and receiver problems have
similar frequency and duration, we did not use the applica-
tion reaction time to detect the sender-limited connections
as the data is collected in core of the network as opposed
to the edge, thus we expect the actual rate of sender-limited
connections to be higher. 3. Many connections are bottle-
necked by two factors simultaneously (e.g., sender-network
or receiver-network). 4. About 90% of the connections
spend some time in the network-limited state, with almost
half of them being network-limited 50% of the time. 5

6.4 Trade-offs in Accuracy and Overhead
Using the CAIDA trace, we evaluate the impact of our

space optimizations on the accuracy of our measurement. To
do this, we operate our software prototype in two modes:
first, trades-off space for accuracy (emulate P4) and second,
5Note that these results are from wide-area network and the char-
acteristics of data-center connections are different from WAN.

11

0 2 4 6 8 10
Samples ¸ x

0

100

200

300

400

500

600
E

rr
or

 in
 S

R
T

T
 (m

s)

Figure 13: Error in inferring SRTT with queue size of 1.
As more packets are exchanged, the error decreases.

measures with high accuracy and precision (ground-truth).
Limited queue size: Our measurement shows that running
Dapper with an unbounded queue increases memory usage
by about 9%. In a network with higher bandwidth capacity,
(i.e., high bandwidth delay product), more memory will be
required. In Figure 13, we examine the error in SRTT when
the queue size is bounded to one. We observe that when
the queue size is bounded, Dapper requires more samples to
reduce error. Note these traces were collected in WAN, not
a datacenter, hence the high RTTs.
Two-phase monitoring: Recall, two-phase monitoring of-
fers a trade-off between accuracy of our heuristics and their
memory overhead. We filter the connections to consider only
those with known options, and use that as the ground-truth
to compare against the midstream inferred constants. Fig-
ure 14 shows the error in inferring MSS and window scaling
options according to Section 5. While the error in MSS de-
creases as more packets are inspected, the inferred window
scale value still differs from the ground-truth by about 20%.
This is because most of these connections are not RWND-
limited, hence the flight size values used in estimating the
scale (Equation ??) do not approach the upper-bound im-
posed by the receiver.

7. RELATED WORK
Here, we discuss the differences of our approach with ex-

isting work in the following categories:

Offline packet trace analysis: Several tools analyze packet
traces to find performance limitation [36, 10, 4] for a known
TCP variant. Some [34] store packet headers that facilitate
diagnosis via running queries on headers. However, offline
analysis makes this category unsuitable for real-time diag-
nosis and introduces large data-collection overhead.

Measurement in the core: Some tools use coarse-grained
metrics collected on switches, e.g., 5-minute SNMP coun-
ters [33]. Such metrics are not sufficiently fine-grained to
diagnose the sources of poor performance [9]; others [24]

5 10 15 20
Packets processed¸x

0

20

40

60

80

100

E
rr

or
 %

N = average-SRTT
N = median-SRTT
N = median-Scale
N = average-Scale

Figure 14: Error in inferring options (MSS and wscale)
midstream, the error rate decreases faster for MSS.

focus on coordination between network switches to ensure
the full packet stream is analyzed. Instead, we rely on the
“edge” for better visibility and a simpler solution.

Instrumenting the network stack: Existing end-host tech-
niques [29, 30, 6, 35], while appropriate for private clouds,
are too invasive for a public IaaS cloud because they would
run in the tenant’s VM. Dapper runs at the cloud-provider
edge and infers the VM’s internal state without tenant’s co-
operation.

Tomography: Network tomography infers link-level prop-
erties (e.g., loss , delay) from end-to-end measurements [14,
25, 13, 26, 28, 16] and may use linear [15, 18] or Boolean
algebra [18, 32, 23] to find congested links. Our work differs
from this body of work since we rely on direct and continu-
ous measurement of performance instead. Tomography can
be complementary to Dapper, e.g., to locate the congested
link(s) among network-limited connections.

Machine learning: Recent work [8] makes the case for us-
ing machine learning (ML) in connection’s performance di-
agnosis. Our solution differs in several aspects: first, in-
stead on relying on ML, we leverage the fact that TCP is a
well studied protocol and derive techniques based on com-
mon characteristics of TCP and its interaction with applica-
tions. Second, our solution is agnostic to application and
TCP variant, while the ML would require new training for
each variant.

Congestion control from the “edge”: To enable new con-
gestion control algorithms in multi-tenant clouds, [17] offers
virtualized congestion control in the hypervisor. Similarly,
[20] enforces congestion control in the vswitch without co-
operation from the tenant VM.

8. CONCLUSION
Dapper helps cloud providers diagnose TCP connections

without instrumenting the tenant VMs. Our solution can run
at line rate in the hypervisor, NIC, or top-of-rack switch.

12

9. REFERENCES

[1] Changhoon Kim, Co-chair of P4 Language Design
Working Group, personal communication.

[2] Nmap. http://www.nmap.org.
[3] The P4 language specification, version 1.0.2.

http://p4.org/wp-content/uploads/2015/04/

p4-latest.pdf.
[4] tcptrace. http://tcptrace.org/.
[5] The CAIDA UCSD 2013 internet traces - 2013/05/29.

http:

//data.caida.org/datasets/passive-2013.
[6] The Web10G project. http://www.web10g.org.
[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In Proc. ACM
SIGCOMM, 2010.

[8] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and
G. Outhred. Taking the blame game out of data centers
operations with netpoirot. In Proc. ACM SIGCOMM,
2016.

[9] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang. Towards highly reliable
enterprise network services via inference of
multi-level dependencies. In Proc. ACM SIGCOMM,
2007.

[10] P. Barford and M. Crovella. Critical path analysis of
TCP transactions. In Proc. ACM SIGCOMM, 2000.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Commununication
Review, 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In
Proc. ACM SIGCOMM, 2013.

[13] R. Caceres, N. Duffield, S. Moon, and D. Towsley.
Inference of internal loss rates in the mbone. In Proc.
GLOBECOM, 1999.

[14] R. Caceres, N. G. Duffield, J. Horowitz, and D. F.
Towsley. Multicast-based inference of
network-internal loss characteristics. IEEE
Transactions on Information Theory, 1999.

[15] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu.
Network tomography: recent developments. Statistical
Science, 2004.

[16] M. Coates, R. Castro, R. Nowak, M. Gadhiok,
R. King, and Y. Tsang. Maximum likelihood network
topology identification from edge-based unicast
measurements. In Proc. ACM SIGMETRICS, 2002.

[17] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik,
M. Ravi, N. McKeown, I. Abraham, and I. Keslassy.
Virtualized congestion control. In Proc. ACM

SIGCOMM, 2016.
[18] N. Duffield. Network tomography of binary network

performance characteristics. IEEE Trans. on
Information Theory, 2006.

[19] G. Hasslinger and O. Hohlfeld. The gilbert-elliott
model for packet loss in real time services on the
internet. In Measuring, Modelling and Evaluation of
Computer and Communication Systems (MMB),
March 2008.

[20] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter,
J. Carter, and A. Akella. AC/DC TCP: Virtual
congestion control enforcement for datacenter
networks. In Proc. ACM SIGCOMM, 2016.

[21] P. Karn and C. Partridge. Improving round-trip time
estimates in reliable transport protocols. In Proc. of
the ACM Workshop on Frontiers in Computer
Communications Technology, SIGCOMM, 1988.

[22] C. Kim, P. Bhide, E. Doe, H. Holbrook, A. Ghanwani,
D. Daly, M. Hira, and B. Davie. In-band network
telemetry (int). http://p4.org/wp-content/
uploads/fixed/INT/INT-current-spec.pdf.

[23] R. Kompella, J. Yates, A. Greenberg, and A. Snoeren.
Detection and localization of network black holes. In
IEEE INFOCOM, 2007.

[24] X. Liu, M. Shirazipour, M. Yu, and Y. Zhang. Mozart:
Temporal coordination of measurement. In Proc. ACM
SOSR, 2016.

[25] H. X. Nguyen and P. Thiran. Binary versus analogue
path monitoring in IP networks. In Proc. PAM, 2005.

[26] H. X. Nguyen and P. Thiran. Network loss inference
with second order statistics of end-to-end flows. In
Proc. ACM IMC, 2007.

[27] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster,
N. McKeown, and J. Rexford. Pisces: A
programmable, protocol-independent software switch.
In Proc. ACM SIGCOMM, 2016.

[28] Y. Shavitt, X. Sun, A. Wool, and B. Yener. Computing
the unmeasured: an algebraic approach to internet
mapping. In Proc. IEEE INFOCOMM, 2001.

[29] P. Sun, M. Yu, M. J. Freedman, and J. Rexford.
Identifying performance bottlenecks in CDNs through
TCP-level monitoring. In ACM SIGCOMM Workshop
on Measurements Up the Stack, 2011.

[30] P. Sun, M. Yu, M. J. Freedman, J. Rexford, and
D. Walker. HONE: Joint host-network traffic
management in software-defined networks. Journal of
Network and Service Management, 2015.

[31] T. Tofigh and N. Viljoen. Dynamic analytics for
programmable NIC’s utilizing p4 - identification and
custom tagging of elastic telecoms traffic.
http://p4.org/wp-content/uploads/2016/06/

P4-Poster-Netronome-ATT.pdf.
[32] W. Wei, B. Wang, D. Towsley, and J. Kurose.

Model-based identification of dominant congested
links. In Proc. of ACM IMC, 2003.

13

http://www.nmap.org
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf
http://tcptrace.org/
http://data.caida.org/datasets/passive-2013
http://data.caida.org/datasets/passive-2013
http://www.web10g.org
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/2016/06/P4-Poster-Netronome-ATT.pdf
http://p4.org/wp-content/uploads/2016/06/P4-Poster-Netronome-ATT.pdf

[33] L. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang,
L. Yuan, and M. Zhang. Netpilot: Automating
datacenter network failure mitigation. SIGCOMM
Comput. Commun. Rev., 2012.

[34] W. Wu, G. Wang, A. Akella, and A. Shaikh. Virtual
network diagnosis as a service. In Symposium on
Cloud Computing, 2013.

[35] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling network
performance for multi-tier data center applications. In
Proc. NSDI, 2011.

[36] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On
the characteristics and origins of Internet flow rates. In
Proc. ACM SIGCOMM, 2002.

14

	1 Introduction
	2 TCP Performance Monitoring
	2.1 Inferring Sender Statistics
	2.2 Inferring Network Statistics
	2.3 Inferring Receiver Statistics

	3 TCP Diagnosis Techniques
	4 Data-Plane Monitoring
	4.1 TCP Monitoring Prototype in P4
	4.2 Hardware Resource Constraints

	5 Two-Phase TCP Monitoring
	6 Evaluation
	6.1 CPU and Memory Overhead
	6.2 Diagnosis Accuracy
	6.3 Analyzing CAIDA Traces
	6.4 Trade-offs in Accuracy and Overhead

	7 Related Work
	8 Conclusion
	9 References

