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Abstract

In recent years point-based geometry has gained increasing attention as an alter-
native surface representation, both for efficient rendering and for flexible geometry
processing of highly complex 3D-models. Point sampled objects do neither have to
store nor to maintain globally consistent topological information. Therefore they are
more flexible compared to triangle meshes when it comes to handling highly com-
plex or dynamically changing shapes. In this paper, we make an attempt to give
an overview of the various point-based methods that have been proposed over the
last years. In particular we review and evaluate different shape representations, ge-
ometric algorithms, and rendering methods which use points as a universal graphics
primitive.
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1 Introduction

Triangle meshes are still the most common surface representation in many
computer graphics applications. Because of their simplicity and flexibility,
they replace traditional CAD surface representations, like NURBS surfaces,
in many areas where processing performance matters.

The reason for this is that triangle meshes are significantly more flexible, since
surfaces of any shape and topology can be represented by a single mesh with-
out the need to satisfy complicated inter-patch smoothness conditions. The
simplicity of the triangle primitive allows for easier and more efficient geom-
etry generation and geometry processing algorithms. This is most evident for
interactive graphics, where the highly optimized (and specialized) graphics
hardware is able to process several millions of triangles per second. Obviously,
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since the triangle primitive is mathematically much simpler compared to a
NURBS patch, more of them have to be used to obtain the same approxi-
mation quality. However, if a smooth surface is to be represented by a trian-
gle mesh (a piecewise linear surface), the approximation order is quadratic,
i.e., halving the edge lengths reduces the error by a factor of 4 which means
the number of triangles is inversely proportional to the approximation error.
Hence, even with the weaker asymptotic behavior, a good approximation (for
the typical precision requirements in graphics applications) can be achieved
with a moderately fine mesh whose vertex density and distribution adapt to
the surface curvature, i.e., to the shape complexity.

Although being much more flexible than NURBS, triangle meshes can also
have restrictions and disadvantages in some special applications. Most al-
gorithms working on triangle meshes require topologically consistent two-
manifold surfaces. As a consequence, manifold-extraction or topology cleanup
steps are necessary for mesh generation methods (Amenta et al., 1998; Bischoff
et al., 2004). Maintaining the topological consistency throughout the mesh
processing pipeline makes these algorithms sometimes significantly more com-
plicated, even if the eventual target application is, e.g., visualization where
a consistent topology is actually not necessary. Dynamic mesh connectivity
(Welch and Witkin, 1994; Kobbelt et al., 2000) is one example where frequent
topology changes occur because the mesh is locally restructured in order to
avoid too much stretching after extreme deformations or to provide more de-
grees of freedom in certain regions of interest. In cases like this, point-based
representations would allow for more flexibility when a globally consistent
surface topology is not necessarily required (e.g., for rendering). Hence, the
consequent next step towards simpler and more flexible geometric primitives
seems to be the use of unstructured clouds of points or disks where we do not
need to store and maintain globally consistent connectivity information.

From a rendering point of view, triangle meshes may not be suitable as meshes
are becoming more and more complex while the typical screen resolution does
not grow as fast. The steadily increasing performance of CPUs and graph-
ics hardware, the cheap memory, and the wide availability of range-scanning
devices result in the acquisition and generation of massive highly detailed ge-
ometry data — models consisting of several millions of triangles are common
nowadays (Levoy et al., 2000). When the number of triangles exceeds the num-
ber of pixels on the screen, rendering such massive datasets leads to triangles
whose projected area is less than one pixel. In this situation, the traditional
incremental rasterization methods become inefficient because of the expen-
sive triangle setup. Hence, points seem to qualify as a better suited rendering
primitive for such highly complex models.

In this survey paper we will first discuss several point-based geometry rep-
resentations (Sec. 2) and show special application scenarios where geometry
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processing algorithms can greatly benefit from the flexibility offered by point-
sampled geometries (Sec. 3). In Sec. 4 we will finally review various point-based
rendering methods. More details on point-based geometry processing, point-
based rendering, or point-based computer graphics in general can be found in
(Pauly, 2003; Zwicker, 2003; Alexa et al., 2003b, 2004).

2 Point-based Representations

A point-based geometry representation can be considered a sampling of a
continuous surface, resulting in 3D positions pi, optionally with associated
normal vectors ni or auxiliary surface properties like, e.g., colors or other
material properties.

2.1 Neighborhoods & Normals

If normal vectors are not given, they can be estimated by analyzing the local
neighborhood of each sample point. Because there is no connectivity informa-
tion available, these local neighborhoods are usually constructed using either
Euclidean neighborhoods or k nearest neighbors. In the first case, all samples
within an ε-ball around a query point are defined to be its neighbors. This
näıve method is not suited for irregularly sampled models, since either too
many or too few neighbors may be found within the ε-ball. The neighborhood
estimate will also get unreliable as soon as the local feature size (Amenta et al.,
1998) becomes smaller than ε, e.g., if two separate surface sheets are located
spatially close to each other.

In contrast, the k nearest neighbors provide a naturally adaptive neighborhood
relation in such situations. If the points satisfy certain sampling criteria, like
adaptation to the local feature size, then the neighborhood estimate is guar-
anteed to be reliable (Amenta et al., 1998; Andersson et al., 2004). Moreover,
the k nearest neighborhood structure has linear complexity in the number of
sample points which is similar to polygon meshes.

Both, Euclidean neighborhood and k nearest neighborhood can be computed
efficiently by using some hierarchical space partitioning technique. In contrast
to triangle meshes, where (consistent) neighborhood information is represented
explicitly, the local neighborhoods are usually dynamically re-computed in the
case of point-sampled geometries. However, in certain applications a caching
of local neighborhood information may also be suitable (Linsen and Prautzsch,
2002).
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Fig. 1. Comparison of the different shape approximations: piecewise linear C0 poly-
gons (left), piecewise constant C−1 points (center), and piecewise linear C−1 splats
(right). Splats provide the same approximation power as triangle meshes, but due
to the C−1 continuity they offer the same flexibility as point clouds.

Let p0 be a sample point and {p1, . . . ,pk} its k nearest neighbors. The co-
variance matrix

C :=
k∑

i=0

(pi − p̄) (pi − p̄)T ∈ IR3×3,

with p̄ :=
∑k

i=0 pi/(k +1), is symmetric and positive semi-definite. The eigen-
vector corresponding to the smallest eigenvalue gives an estimate for the nor-
mal direction. Since this determines the normal vector up to its sign only,
a consistent orientation over all sample points has to be constructed by a
propagation along a minimum spanning tree (Hoppe et al., 1992).

2.2 Purely Point-Based Representations

From an approximation point of view, a point cloud is a piecewise constant
surface approximant. Hence, the resulting approximation power is linear, i.e.,
with an average spacing h between the samples pi, the approximation error
with respect to each coordinate function is of the order O(h) (Davis, 1975)
(cf. Fig. 1). For the approximation of a geometric shape this means that the
approximation error is determined by the spacing between the samples. As a
consequence, the sampling has to be adjusted to the surface area, implying a
dense sampling even in flat surface regions. In fact, the number of samples is
inversely proportional to the squared approximation error.

A point-based representation that is mainly targeting at rendering is proposed
by Grossman and Dally (1998). Instead of a completely unorganized point
cloud, they use a set of depth images that are orthogonally sampled from a
given input geometry. Similar to image-based approaches, this representation
is also constructed from several views of an input object, but it differs in
that each pixel is a surface sample containing geometric position and (view-
independent) surface color.
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Fig. 2. Point-sampling of a circle with different quantization levels (left : 5 bit, right :
10 bit) and different sampling densities (top: 2 π/32, bottom: 2 π/1024). In the top
row the approximation error between the continuous circle and the discrete point
sets is dominated by the distance between samples while in the bottom row the
error is dominated by the quantization. Top left and bottom right are good samples
since quantization error and sampling density are of the same order thus minimizing
redundancy.

If the input geometry contains a certain amount of (tolerable) noise, an exact
sampling may not be necessary. Instead, Kalaiah and Varshney (2003b) pro-
posed a non-deterministic statistical point-based representation, where a hier-
archical PCA analysis partitions the geometry and its attributes (normals and
colors) into a set of local Gaussian probability distributions. Reconstruction
and rendering can then be performed by random sampling these probability
distribution functions.

For a compact representation, the quantization precision to be used for storing
the sample coordinates also has to be taken into account. Since the average
sample spacing and the approximation error are of the same order, the quan-
tization error should also be about the same magnitude in order to minimize
redundancy (cf. Fig. 2) (Botsch et al., 2002). If we sample with a resolution of
n ≈ h−1, we need O(n2) samples to cover a given surface. Using a quantization
precision of O(n) then leads to a total memory consumption of O(n2 log(n))
to store the coordinates of all sample points.

This memory cost can be reduced significantly by a hierarchical point-based
representation. We start by using a regular 3D binary voxel grid to represent
a point-based model, such that for each non-empty grid cell its center position
is used as sample point. This sampling respects the proportionality between
sample spacing and quantization precision, but it has complexity O(n3), since
empty cells have to be stored as well. Recursively sub-sampling the regular grid
and applying zero-tree pruning results in an adaptive octree structure. This
hierarchical organization of the full cells yields a very compact point-based
LoD-representation that needs about 8/3 bit per sample point. By entropy
encoding, this amount is further reduced down to about 1–1.5 bit per point
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(Botsch et al., 2002). Since the bit rate is independent of the sampling density
h, the total memory costs in fact reduce to O(n2).

However, the insufficient object-space approximation power of purely point-
based representations usually requires a very dense sampling. Therefore, splats
seem to be a better compromise between the simplicity of the geometric prim-
itive and the number of primitives that have to be used, as shown in the next
section.

2.3 Surface Splats

Surface splats have first been proposed for rendering purposes by Zwicker et al.
(2001). In order to bridge the gaps between neighboring point samples, points
pi are associated with a normal vector ni and a radius ri, turning them into
object-space circular disks.

A locally optimal adaptation to the curvature of the underlying surface is
provided by elliptical splats, that are defined by two tangential axes ui and
vi and their respective radii. Optimal local approximation is achieved if the
two axes are aligned to the principal curvature directions of the underlying
surface and the radii are inversely proportional to the corresponding minimum
and maximum curvatures. The tangent vectors can be scaled according to the
corresponding ellipse radii such that an arbitrary point q in the plane spanned
by {pi,ui,vi} lies in the interior of the splat if it satisfies the condition

(
uT

i (q− pi)
)2

+
(
vT

i (q− pi)
)2
≤ 1.

Differential geometry tells us that locally a proper ellipse is the best linear ap-
proximant to a smooth surface. In this sense splat-based representations are
superior to triangle meshes. Since splats are piecewise linear surface primitives,
they provide the same quadratic approximation order as triangle meshes (cf.
Fig. 1). Just like for triangle meshes, the sampling density can therefore adapt
to the surface curvature, such that highly detailed regions are sampled with a
higher density, while flat surface regions are sampled more sparsely. Because
of the higher approximation power, the quantization precision for splat coor-
dinates has to be O(n2), n again denoting the sampling density. Since splats
do not have to join continuously (like triangles in a mesh), but are C−1 contin-
uous instead, they still provide the same topological flexibility as pure point
clouds (cf. Figs. 5, 13).

Representing sharp features, like edges or corners in technical datasets, is a
well studied problem for triangle meshes. Because the surface is no longer
differentiable, the approximation power breaks down to linear order. Addi-
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Fig. 3. In order to represent sharp features in technical datasets, each splat can be
clipped against one or two clipping lines. The left example was generated using CSG
operations, the right example shows a splat-based approximation of the well-known
fandisk model.

tionally, alias artifacts are introduced by insufficient sampling, that cannot be
removed by increasing the sampling density (Kobbelt et al., 2001). In order to
remove these artifacts and reduce normal noise, the sampling has to be aligned
to the principal curvature directions (Botsch and Kobbelt, 2001). If surface
splats are to represent sharp features, all splats that sample these features
have to be clipped against one (edges) or two (corners) clipping lines that are
specified in their local tangent frames (cf. Fig. 3) (Pauly et al., 2003b).

2.4 Moving Least-Squares Surfaces

The moving least-squares (MLS) surfaces of Levin (1998, 2003) provide an
approximating or interpolating surface for a given set of point samples by local
higher order polynomials and have first been applied to point-based methods
by Alexa et al. (2001, 2003a). An MLS surface S is defined in terms of the
MLS projection operator Ψ : B → IR3, that projects points from a vicinity B
of the MLS surface onto the surface itself. Hence, the surface S is defined by
all fix points of this operator that project onto themselves:

S := {x ∈ B : Ψ(x) = x} = range(Ψ).

The domain B of this projection operator is the neighborhood of the input
points pi and can be defined, e.g., by a union of balls centered at the pi:

B =
⋃
i

{
x ∈ IR3 | ‖x− pi‖ < rB

}
.

The actual computation of the projection r 7→ Ψ(r) is split into three steps:

(1) Find a local reference plane Hr =
{
x ∈ IR3 : nTx = nTq

}
by minimizing
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the non-linear energy functional

EMLS(q,n) :=
∑

i

(
nTpi − nTq

)2
θ (‖pi − q‖)

for any n,q ∈ IR3 with n = n(q) = r−q
‖r−q‖ , where θ : IR → IR denotes a

smooth, positive, and monotonically decreasing weight function.
(2) Find a local bivariate polynomial approximation g : Hr → IR3 by a

weighted least-squares fit to the points pi in the neighborhood of q. Let
qi be the orthogonal projection of pi onto Hr, (xi, yi) its local 2D coor-
dinates, and fi := ‖qi − pi‖ its height over Hr. Then the error∑

i

(g(xi, yi)− fi)
2 θ (‖pi − q‖)

is to be minimized.
(3) The projection of r is finally defined by Ψ(r) := q + g(0, 0)n.

The typical choice for the decreasing weight function θ is a Gaussian θ(d) =
e−d2/h2

, resulting in C∞ continuous MLS surfaces. The parameter h of the
Gaussian corresponds to the globally estimated sample spacing h and can be
used to control the degree of smoothing. For irregularly sampled point sets this
parameter could be chosen locally instead, as proposed by (Pauly et al., 2002).
The approximation power of MLS surfaces is conjectured to be O(m+1), with
m being the degree of the local polynomial approximant g.

The drawback of MLS surfaces is the computationally involved non-linear op-
timization problem for finding the reference frame Hr. A slightly different but
considerably simpler projection approach is proposed by Alexa and Adamson
(2004), where they also take a correct normal computation into account in or-
der to properly define implicit surfaces from point cloud data (Adamson and
Alexa, 2003, 2004). Their projection procedure repeatedly projects a given
point x onto local reference planes that are defined by a weighted average
position

a(x) :=

∑
i θ (‖x− pi‖)pi∑

i θ (‖x− pi‖)

and a normal computed by either a weighted least-squares fit

n(x) := argmin‖n‖=1

∑
i

∥∥∥nT (x− pi)
∥∥∥2

θ (‖x− pi‖)

or by a weighted averaging of input normals ni

n(x) :=

∑
i θ (‖x− pi‖)ni

‖∑i θ (‖x− pi‖)ni‖
.
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Fig. 4. Simplified MLS projection procedure. In each step the current approximation
x′ is updated by projecting it orthogonally onto the reference plane given by a(x′)
and n(x′).

The iterative projection procedure is then proposed as follows (cf. Fig. 4):

(1) Initialize x′ ← a(x).
(2) Compute n← n(x′) and a← a(x′).

(3) If
∥∥∥nT (a− x′)

∥∥∥ < ε return x′.

(4) Else project x′ ← x′ + nnT (a− x′) and go back to (2).

If this iteration converges, it yields a point x on the MLS surface. However, this
simplified projection procedure does not result in an orthogonal projection,
but it can be enhanced to do so (Alexa and Adamson, 2004).

In contrast to the algorithmic construction of MLS surfaces using the pro-
jection operator, Amenta and Kil (2004) give an explicit definition of MLS
surfaces in terms of critical points of the energy function EMLS along lines
determined by a vector field. In this work they also discuss stability issues of
the traditional projection operator for points not being sufficiently close to
the surface and propose an alternative projection technique.

MLS surfaces can be used to define a smooth surface from a set of points, but
they are also a versatile tool to generate additional sample points on a point-
sampled surface, e.g., for up- or down-sampling a model, for low-pass filtering
it, or for mapping points back onto the initial surface after local restructuring.

MLS surfaces are a valuable and efficient tool for point-based geometry pro-
cessing. However, rendering them, e.g. by sufficient up-sampling, is quite in-
volved and does not map to graphics hardware (see Sec. 4). Hence, in most
interactive applications, usually a combination of surface splats and MLS sur-
faces is used.
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3 Point-based Geometry Processing

Several concepts and algorithms known from triangle meshes have been trans-
fered to point-based geometry representations by simply replacing the mani-
fold neighborhood relation implied by the triangle connectivity with the more
general k nearest neighborhood relation for point clouds. However, several
recently developed techniques are especially designed for point-sampled ge-
ometries and actually exploit the additional flexibility offered by them. Since
no connectivity information or topological consistency has to be maintained,
local re-sampling or restructuring is much easier than it would be using trian-
gle meshes.

Point-based models are usually acquired by range scanning or image-based
reconstruction methods. In both cases, the point samples contain a certain
amount of noise due to physical measurement errors, that is to be reduced
by low-pass filtering techniques. Using a decomposition into patches and local
height-field approximations, Pauly and Gross (2001) transfered Fourier-based
spectral methods to point-sampled geometries. Their method allows for math-
ematically well-defined frequency analysis and filtering. While the frequencies
could also be used to find feature regions of the geometry, a more robust fea-
ture detection method was presented by Pauly et al. (2003a). Local covariance
analyses on multiple scales robustly find feature regions that can be connected
to feature lines based on a minimum spanning tree approach.

Scanned data usually contains more artifacts than just measurement noise.
Occlusions in concave areas or specular surface materials may lead to holes or
insufficient sampling, requiring some kind of hole-filling mechanism. Difficult
material reflectances or textured models can also lead to outliers that have
to be detected and removed before further processing. These two and several
other intuitive tools for post-processing scanned data have recently been been
presented by Weyrich et al. (2004).

Because real-world objects are captured with as much detail as possible, the
resulting models are usually highly complex and have to be simplified in or-
der to be of suitable complexity for further processing. Pauly et al. (2002)
transfered several mesh decimation methods — vertex clustering, incremen-
tal decimation using error quadrics, and remeshing by particle simulation —
to point-sampled surfaces. These methods show the same behavior as their
mesh counterparts, i.e., greedy incremental decimation gives good results, but
the point distribution can greatly be equalized by several point repulsion it-
erations. However, both methods do not allow to prescribe an exact global
error for the decimation, and they are not taking the full splat geometry into
account, but rather rely on the proper distribution of splat centers .
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Fig. 5. Optimized sub-sampling of the Iphigenie (left, 350k points) using 30k circular
splats (right). While respecting a prescribed error tolerance, a global optimization
yields a very regular splat distribution.

In contrast, Wu and Kobbelt (2004) propose a simplification method that
is especially designed for splat-based surface approximations. Taking the full
piecewise linear geometry of surface splats into account, their method pro-
vides an exact global error bound as well as a high-quality splat distribution
(cf. Fig. 5). In a first step, a patch, respectively a splat, is grown from each
input sample, such that it does not violate the error tolerance. From this set
of candidate splats, a subset that fully covers the input geometry is chosen
in a greedy manner. Finally, a global optimization of the patch selection im-
proves the splat distribution, similar to a repulsion-based particle simulation.
Because all candidate splats have been constructed to stay within the error
tolerance, the coverage tests can be done by simple set operations. This tech-
nique exploits both the improved local approximations by elliptical splats as
well as the added flexibility that comes from not having to maintain a globally
consistent topology, in order to obtain a considerably better approximation
compared to triangle meshes (cf. Fig. 12, left, and Fig. 13).

The biggest advantage of point-based representations over polygonal meshes is
that they can easily be restructured without the need to take care of manifold
conditions. Hence, applications requiring frequent geometry re-sampling will
benefit most from point-based methods. One prominent example is PointShop3D
of Zwicker et al. (2002), that is a PhotoShop-like tool for manipulating point-
sampled models (cf. Fig. 6). Since the point samples can represent surface
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Fig. 6. PointShop3D offers various manipulations of point-sampled models, like
texture painting (left), low-distortion parameterization and displacement mapping
(center), and carving (right).

positions as well as material properties or textures, these values can easily
be modified on a per-point basis. Tools like sculpting and carving change the
point positions, texture smoothing or painting modifies the point colors. In
order to be able to paint arbitrary fine details onto the model or to fill up
gaps after displacing points, local re-sampling is heavily used. Another very
recent approach for painting point-sampled surfaces has been proposed by
Adams et al. (2004). Targeting at realistic painting, their method provides
haptic feedback and physically simulated paint transfer. Again, this method
allows the user to paint arbitrarily fine detail on the surface by locally up-
sampling the affected regions on the fly in order to provide a sufficient sample
resolution.

The simultaneous point-sampling of geometry, normals, and appearance at-
tributes greatly simplifies these painting methods. In contrast, for triangle
meshes there is no such tight coupling between geometry and appearance, re-
quiring the use of a texture atlas for painting the mesh. To enable the painting
of fine details, this texture atlas has to be refined dynamically (Carr and Hart,
2004), what is considerably more complicated as the natural point-sampling
approach.

Another challenging topic is shape deformation. Among the many different
approaches to model freeform shapes, volumetric freeform deformation seems
to be best suited for the interactive modification of point-sampled geometries.
These deformation techniques first generate a displacement function d : IR3 →
IR3. Then every surface sample pi (e.g. a mesh vertex or a splat center) is
shifted by pi 7→ d(pi).

When applying an extreme deformation to a triangle mesh, certain triangles
exhibit strong stretching, leading to numerically and visually undesirable tri-
angles that have to be removed by local restructuring (Welch and Witkin,
1994; Kobbelt et al., 2000; Lawrence and Funkhouser, 2003). For point-based
models, the problem is even worse, since the model can tear apart under too
much stretch. However, the splats exhibiting too much stretching are easily
detected by looking at the Jacobian of the displacement function d. Splitting
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Fig. 7. Shape modeling with point-sampled models. Frequent local re-sampling ac-
counts for stretching and allows for extreme deformations (left). A combination
of free-form deformation, CSG operations, and displacement mapping was used to
create the mug (right).

those splats into two, followed by a local tangential relaxation (using particle
repulsion and MLS projections), solves the dynamic restructuring problem for
point clouds and allows for extreme deformations of point-based models (cf.
Fig. 7) (Pauly et al., 2003b). In a similar sense, oriented particles have been
used to represent deformable (parametric or implicit) surface models that can
easily be stretched, split, or joined, while a repulsion-based particle simula-
tion achieves a uniform and sufficiently dense surface sampling throughout the
modeling process (Szeliski and Tonnesen, 1992; Witkin and Heckbert, 1994).

Constructive Solid Geometry (CSG) is a very common technique for building
complex models by boolean combinations of simpler ones. Since this requires
inside/outside tests w.r.t. the given solids, an implicit representation of the
models is best suited (Hoffmann, 1989). Such a volumetric surface represen-
tation can easily be derived from a point-sampled surface by observing the
(direction of) the shift vector pi − Ψ(pi) induced by the MLS projection op-
erator relative to the oriented normal vector.

Since the intersection of two smooth objects may result in sharp feature curves,
these have to be sampled properly in order to avoid aliasing artifacts. Pauly
et al. (2003b) proposed a simple technique to snap nearby sample points to
the sharp features which is based on a local Newton-type iteration method.
The sharp features are then represented by clipped splats (cf. Fig. 8, left).
Another very efficient method for interactive CSG computations was proposed
by Adams and Dutré (2003) (cf. Fig. 8, right). In a following paper they
also implemented their approach on the GPU in order to exploit hardware
acceleration for CSG (Adams and Dutré, 2004).

Solving PDEs on triangle meshes is a very important topic and has been
widely used for mesh smoothing, mesh editing, deformable models, and many
other geometry processing tasks. When transferring these methods to point-
sampled models, the missing geodesic neighborhood information again has to
be replaced by the spatial k nearest neighbors. These can be used to define
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Fig. 8. The left part shows the different steps for point-based CSG operations:
classification (top row) and intersection curve sampling (bottom row). Examples of
difference and intersection of a head and a helix are shown on the right.

an approximate tangent space on the point models such that local Delaunay
triangulations define the coupling between neighboring points. This allows for
the straightforward discretization of differential operators and the derivation of
a corresponding stiffness matrix. This approach has been proposed by Clarenz
et al. (2004), where they present PDE-based segmentation, texture impainting,
texture synthesis, and geometric smoothing as applications of their framework.

Even physically based modeling and animation of volumetric point-sampled
models has been proposed very recently (Müller et al., 2004). Since both the
surface and the volume of the model are represented by point samples, local
restructuring is easily possible, allowing for arbitrarily large distortions from
the original shape. Exploiting the flexibility of point-based methods even com-
plicated topology changes, like splashing water, can be simulated.

4 Point-based Rendering

The final stage for interactive geometry processing applications is the effi-
cient rendering of point-sampled geometries. Points have first been proposed
as universal rendering primitives by Levoy and Whitted (1985). Instead of de-
riving a rendering algorithm for each geometry representation, they propose
to subdivide each representation into a sufficiently dense set of sample points.
The rendering of these points can then be performed by one specially tuned
technique.

Since we want to generate continuous (i.e. hole-free) images by rendering a dis-
crete set of surface samples, methods for closing the holes and gaps in-between
the samples have to be found. This can be done by image-space reconstruction
techniques (Grossman and Dally, 1998; Pfister et al., 2000) or by object-space
re-sampling. The techniques from the latter category dynamically adjust the
sampling rate, such that the density of projected points meets the pixel reso-
lution. Since this depends on the current viewing parameters, the re-sampling
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Fig. 9. A checkerboard texture rendered with surface splats: without (left) and with
EWA filtering (right).

has to be done dynamically for each frame. Examples are dynamic sampling
of procedural geometries (Stamminger and Drettakis, 2001), the randomized
z-buffer (Wand et al., 2001), and the rendering of MLS surfaces (Alexa et al.,
2001, 2003a; Fleishman et al., 2003).

In contrast to this, surface splatting (Zwicker et al., 2001) renders splats, i.e.,
object-space disks or ellipses, instead of points only. In this case, the mutual
overlap of splats in object-space guarantees a hole-free rendering in image-
space. On the other hand, the näıve rendering of inter-penetrating splats re-
sults in shading discontinuities (cf. Fig. 12). Therefore, Zwicker et al. (2001)
proposed a high quality anisotropic anti-aliasing method that resembles the
anisotropic EWA texture filtering of Heckbert (1989). Each splat is assigned a
radially symmetric Gaussian filter kernel, such that a continuous surface signal
in object-space is reconstructed by a respectively weighted averaging of splat
data (e.g. colors, normals). Combining these object-space reconstruction ker-
nels with a band-limiting image-space filter results in their high quality EWA
splatting framework (cf. Fig. 9). If both the object-space and the image-space
filters are Gaussians, and if the projection is locally (i.e., per splat) approxi-
mated by an affine mapping, then these two filters can be combined into one
single Gaussian, enabling a quite efficient implementation. Nevertheless, being
a purely software-based implementation, this approach is computationally too
expensive for displaying highly complex models, since it achieves a splat rate
of about 1M splats/sec on current hardware.

Botsch et al. (2002) therefore proposed the use of hierarchical representations
for more efficient rendering. Their octree-based point clouds (see Sec. 2) can
be displayed by rendering either one point or one splat for each non-empty
leave cell. They showed that modelview and projection transformations of a
leaf cell center p can be implemented by an incremental summation during a
depth-first traversal of the octree, followed by a final de-homogenization step.
Since points sharing a common octree path also share terms of these sums, it
turns out that each point transformation requires just about 4 scalar additions
and 2 divisions in total. Combining this with pre-computed tables for lighting
and splat footprints results in a splat rate of 5M splats/sec. However, this
implementation is still completely software-based and puts a high load on the
CPU, blocking it from other geometry processing tasks.
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Fig. 10. A sequentialization of a LoD hierarchy results in the rendering of continuous
segments of a linear point list. This, and the delegation of fine-grained LoD control
to the GPU, results in a hierarchical LoD rendering with almost no CPU load.

In the last years, the increasing efficiency and programmability of modern
graphic cards (Lindholm et al., 2001; Mark et al., 2003) triggered the develop-
ment of hardware-based splatting methods. Targeting at the efficient visual-
ization of the models acquired during the Digital Michelangelo project (Levoy
et al., 2000), Rusinkiewicz and Levoy (2000) proposed a hierarchical rendering
method based on a pre-computed bounding-sphere tree structure.

As this recursive tree traversal is not efficient enough to keep current GPUs
busy, Dachsbacher et al. (2003) proposed a sequentialization of the LoD tree
structure that corresponds to a breadth-first re-ordering. Rendering the model
at a certain level of detail then requires to process a continuous sub-segment
of this linear point list directly by the GPU (cf. Fig. 10). Transferring the
point list into video memory once and implementing the LoD selection in the
vertex shaders of the GPU results in a low CPU load and an impressive splat
rate of more than 50M splats/sec. The drawback of this approach is that the
rendering primitives used for each splat are un-filtered image space squares
only, hence the quality could be improved considerably by using Gaussian
filtering and elliptical splat primitives.

To remove shading discontinuities and achieve a visually smoother rendering,
a Gaussian filter kernel should be assigned to each splat also in the case of
hardware-accelerated rendering. The difficulty is that when two splats are pro-
jected to the same pixel, only closely overlapping splats should be blended,
while in other cases when the z-distance between the splats is above a cer-
tain threshold, the front-most splat should overwrite the splats behind. An
implementation of this functionality requires a fuzzy depth test or a more
general a-buffer (Carpenter, 1984). Both are not available on current GPUs,
therefore multiple rendering passes have to be used instead. The first one does
so-called visibility splatting , i.e., it fills the z-buffer by rendering (without light-
ing) all objects slightly shifted away from the viewer by ε. The second pass
renders all splats with Gaussian blending turned on, but it does not alter the
z-buffer, thereby blending only those splats that differ by less than ε in depth
(Rusinkiewicz and Levoy, 2000). This process accumulates a weighted sum of
colors (

∑
i αirgbi,

∑
i αi) in each RGBA pixel, such that a per-pixel division
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Fig. 11. Previous local affine approximations to the projective mapping caused holes
for extreme viewing angles (center). These holes can be closed either by an affine
approximation that correctly maps the outer splat contour (right) or by per-pixel
ray-casting that exactly computes the inverse projective mapping.

by its accumulated alpha value calculates the correct weighted average. This
per-pixel normalization can efficiently be done by rasterizing a window-sized
quad that is textured by the result of the second rendering pass (Botsch and
Kobbelt, 2003; Guennebaud and Paulin, 2003).

Using the pixel shaders of current graphics hardware allows the rasteriza-
tion of elliptical splats by rendering just one vertex per splat. Computing the
projected size in a vertex shader triggers the rasterization of an image space
square. A fragment shader processes each of its pixels and constructs the ellip-
tical shape by discarding pixels outside the ellipse. An implementation using
circular object-space splats and two-pass Gaussian filtering was presented by
Botsch and Kobbelt (2003), achieving a splat rate of 10M splats/sec.

However, this method, like most others, uses an affine approximation to the
projective mapping in order to compute the splat’s footprint in image-space.
This simplification may lead to holes in the image, when the model is viewed
from extremely flat angles and is shifted away from the main viewing axis
(cf. Fig. 11). This problem was addressed first by the perspective accurate
splatting of Zwicker et al. (2004), using a different affine approximation to
the projection, such that the outer splat contour (instead of the splat center)
is correctly mapped. Although being slightly incorrect in the splat’s interior,
this method effectively avoids holes in the image. As the projection is still
approximated affinely, the full EWA splatting framework can be integrated
into this approach. Per-pixel correct projections can be achieved performing a
local ray casting in the fragment shaders, as proposed by Botsch et al. (2004).

Most point-based rendering methods use a constant normal vector for lighting
each individual splat, leading to results comparable to flat shading for trian-
gle meshes (cf. Fig. 12, center left). Blending by Gaussian reconstruction ker-
nels smoothes out the shading artifacts and is hence comparable to Gouraud
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Fig. 12. Comparing different rendering techniques for a simplified model of a scanned
statue: näıve splatting without filtering is comparable to flat shading (center left),
Gaussian blending corresponds to Gouraud shading (center right), Phong splatting
yields the same quality as Phong shading for triangle meshes (right).

shading: the shading varies smoothly, but the image may appear blurry (cf.
Fig. 12, center right). The use of non-constant normal fields and per-pixel
lighting significantly improves the visual quality (Zwicker et al., 2001; Kala-
iah and Varshney, 2001, 2003a). For triangle meshes, Phong shading achieves
superior rendering quality by computing per-pixel lighting based on interpo-
lated normal vectors of the triangle’s vertices in object space. This concept
is not directly applicable to point-based rendering since access to the normal
vectors of neighboring points or splats is not possible due to the lack of ex-
plicit connectivity information. In order to achieve per-pixel normals while
maintaining the simplicity of splat-based representations, Botsch et al. (2004)
assign a linear normal field to each splat individually. These normal fields
are derived by least squares fitting to a given dense set of sample normals.
Rendering such Phong-splats can easily and efficiently be implemented on the
GPU and yields high visual quality comparable to Phong shading for triangle
meshes (cf. Fig. 12, right).

In order to represent sharp features by point-sampled geometries, Pauly et al.
(2003b) proposed to clip splats against clipping lines defined in their local
tangent frames (cf. Fig. 3). This representation can easily be rendered by
integrating a per-pixel clipping test into the fragment shaders, as proposed by
Zwicker et al. (2004) and Botsch et al. (2004).

The presented techniques exploit programmable shaders of current GPUs to
make hardware acceleration directly available for point-based rendering. The
resulting rendering approaches are very efficient and provide a high visual
quality. Since elliptical splats represent an optimal approximation to the local
surface geometry and since the C−1 continuity of splats provides further de-
grees of freedom, splatting techniques lead to superior visual rendering results
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Fig. 13. Comparing different shape approximations consisting of about 730 geome-
try primitives: irregular triangle meshes (left), regular aligned triangle mesh (center
left), circular splats (center right), elliptical splats (right). The respective approxi-
mation errors to the continuous torus are 0.64%, 0.58%, 0.20%, and 0.14%.

compared to triangle rendering with the same number of linear primitives (cf.
Fig. 13). Nevertheless, since current graphics hardware is highly optimized
and specialized for triangle rendering, points or splats still cannot keep up
with triangles in terms of effective rendering performance.

5 Conclusion

Point-based representations have proven to be a valuable alternative to polyg-
onal meshes in several special applications. In particular when highly complex
or dynamic models are to be processed and a proper surface topology is not
necessarily required, the simplicity of point-based representations leads to sim-
pler and more efficient algorithms.

Elliptical surface splats provide the same asymptotic approximation power
as triangle meshes, but achieve a locally better approximation since the axes
of elliptical splats can be aligned to the principal curvature directions of the
surface. Moreover, splats offer more flexibility since they do not require C0

continuity. Hence, given a certain budget of surface primitives, splats usu-
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ally yield better approximation results compared to triangles (cf. Fig. 13).
Although current graphics hardware is optimized for triangle rendering, pro-
grammable shaders enable the very efficient implementation of high quality
point-based rendering techniques whose performance is already coming close
to the effective polygon rate.

In the future, new types of graphics hardware architectures could exploit the
particular advantages of points as a general 3D graphics primitive by support-
ing adaptive object space sampling techniques in order to reduce the redun-
dancy of point-based representation and the overdraw rate for screen pixels.
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