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Abstract We present a novel method for generating texture
maps for 3Dgeometricmodels reconstructed using consumer
RGB-D sensors. Our method generates a texture map for a
simplified 3D mesh of the reconstructed scene using spa-
tially and temporally sub-sampled key frames of the input
RGB stream. We acquire an accurate texture map by opti-
mizing the texture coordinates of the 3D model to maximize
the photometric consistency among multiple key frames. We
show that the optimization can be performed efficiently using
GPU by exploiting the locality of texture coordinate manipu-
lation. Experimental results demonstrate that our method can
generate a texture map in a few tens of seconds for a large
3D model, such as a whole room.

Keywords 3D reconstruction · Texture mapping · RGB-D
images · Photometric consistency optimization

1 Introduction

Nowadays RGB-D cameras, such as Microsoft Kinect, have
become widely available. Various researches on 3D recon-
struction based on RGB-D images, e.g., KinectFusion and
its variations [10–12,15], enabled 3D navigation of a scene
by rendering the reconstructed 3D model from desirable
viewpoints. However, these reconstructed 3D models are
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not yet popularly used in applications, such as virtual real-
ity and augmented reality, due to the lack of accurate color
information. Most reconstruction methods so far recover the
color information by blending the corresponding color val-
ues in different input images. Imprecisely estimated camera
poses and lens distortions can cause misalignments between
images, and consequently this simple blending may induce
blurring and ghosting artifacts in the blended surface colors
and diminish the quality of the rendering results.

Recently, Zhou andKoltun [17] proposed an optimization-
based approach for mapping color images onto a 3D geomet-
ric model reconstructed using a consumer RGB-D sensor.
They optimized the camera poses for all color images and
applied non-rigid transforms to color images to enhance
the alignments with the 3D model. In their approach, the
3D reconstructed model is rendered using the vertex col-
ors computed by weighted averages of aligned color values.
To represent the detailed color information of a large recon-
structed scene, itwould require a large number of vertices that
introduce storage and rendering overheads. In addition, their
alternating optimization takes several minutes for a small
object, and the approach is not much scalable to handle large
indoor scenes.

In this paper,wepropose a novel approachbasedon texture
mapping for mapping color images onto a 3D reconstructed
scene. Differently from previous methods [11,17] that use
voxel or vertex colors to render 3D reconstructed models,
our approach uses an accurately recovered texture map for
rendering. The usage of texture mapping enables a simpler
mesh to be used for reconstructing detailed color information
of a large scene, such as a whole room.

However, it is not straightforward to generate a texture
map without blurring and ghosting artifacts from input color
images, as the color images and the reconstructed 3D model
should be precisely aligned to produce such a texture map.
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Although it could be possible to generate a texture map from
vertex colors, such an approach would need optimized col-
ors for a huge number of vertices to handle a large scene. To
efficiently generate an accurate texture map usable for ren-
dering a large 3D reconstructed model, we present a novel
framework for mapping color images onto a 3D model with
the following technical contributions:

– Texture map generation method that maximizes the pho-
tometric consistency of input images in the global texture
map.

– Efficient optimization of the texture map generation
method based on a parallel Gauss–Newton solver run-
ning on GPU.

– Spatiotemporal adaptive sampling of input images that
reduces the redundant information and motion blurs for
faster processing and sharper texture maps.

Experimental results on various RGB-D image data
demonstrate that the proposed method reconstructs high-
quality texture maps within a few seconds for small objects
and within practical running times for large indoor scenes.

2 Related work

To generate 3D models for real objects or scenes from given
images, 3D reconstruction has been widely researched in
computer graphics and vision [1,4,14]. As depth cameras
have become popular, recent developments focus on recon-
struction using RGB-D images. KinectFusion proposed by
Newcombe et al. [10] is one of the pioneering works that
reconstructs the 3D geometry using a volumetric representa-
tion. Based on KinectFusion, several extensions [10,11,15,
16] have been proposed. Among them, Niener et al. [11] pro-
posed a large-scale indoor scene reconstructionmethod using
a hash-based geometric representation. In our approach, we
use their method in the model reconstruction step to gener-
ate a 3D mesh with estimation of the camera poses of input
color images. We also use the 3D models and corresponding
camera poses reconstructed by [16] for the experiments.

Beyond the 3D geometry reconstruction, mapping the
color information fromgivenmultiple images onto the recon-
structed model has not been heavily investigated yet. In most
3D reconstruction methods [10,11], estimated relative cam-
era poses between input images are used to average the
pixel colors for object points. Hence, imprecise alignments
between color images cause blurring and ghosting artifacts,
which lower the rendering quality. Our texture coordinate
optimization resolves the misalignments by imposing pho-
tometric consistency among color images projected on the
reconstructed model.

The colormapoptimizationmethodproposedbyZhou and
Koltun [17] is one of the state-of-the-art color reconstruction
techniques. After reconstructing a 3D model from a depth
image stream, they optimize the alignments among color
images with respect to every vertex in the model. They also
optimize a non-rigid deformation function for each image
to correct distortions due to imprecise 3D reconstruction.
Although their method can precisely refine the color map-
ping for a reconstructed 3D object, it takes several hundreds
of seconds for a small object due to its time-consuming non-
linear optimization. By applying texture mapping to a 3D
model and exploiting the locality of texture coordinate opti-
mization, ourmethod can generate a high-quality texturemap
within a few seconds for a small object.

3 Overview

3.1 Overall process

Figure 1 shows the overall process of our approach to gen-
erate a texture map for a reconstructed 3D model. We use
a depth and color image stream as the input. For a given
input stream, we reconstruct a geometric model using a
voxel-based3D reconstructionmethod, and the reconstructed
model is simplified using a mesh simplification method. We
then select key frames from the color image stream using
spatiotemporal adaptive sampling to reduce the processing
time and to increase the quality of the generated texture map.

Togenerate a global texturemap,wefirst estimatemultiple
sub-textures for each face by projecting its vertices onto the
selected key frames in which the face is visible. The global
texture map for a face is determined by weighted blending
of the multiple sub-textures. The initial sub-textures can be
photometrically inconsistent to each other because of impre-
cisely estimated camera poses and possible distortions in the
key frames.We refine the sub-textures of faces by optimizing
an objective function of sub-texture coordinates to maximize
the photometric consistency. This optimization enables us to
obtain a precise global texture map that can be rendered effi-
ciently with the simplified mesh.

3.2 Preprocessing of input data

Geometric model reconstruction For a given depth and color
image stream, we first reconstruct a 3D geometric model
with a triangularmesh representation.Any 3D reconstruction
method can be used for this step. In this paper, we use [11,16]
to obtain a 3Dmodel from a given RGB-D image stream. For
[16], we used the reconstructed 3D models provided by the
authors for experiments.
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Fig. 1 The overall process of our texture map generation method for a
3D reconstructed scene. Input color images are mapped and blended on
a simplified version of the 3D reconstructed mesh to produce a global

texture map. Our method refines the global texture map by optimizing
the texture coordinates of multiple sub-textures mapped onto each face
of the simplified 3D mesh

Fig. 2 Mesh simplification example. The number of faces is reduced
from a 460 K to b 23 K

Model simplification Even for a small scene, the initial mesh
M0 usually consists of millions of vertices and faces, which
are too heavy for the remaining process. In addition, render-
ingwith texturemappingbecomes inefficientwhen themodel
contains too large number of faces. To address these issues,
we apply a mesh simplification method with quadric error
metric [6] toM0 for reducing the number of faces while pre-
serving the shape. In Fig. 2, we reduced the number of faces
significantly, up to 5 % of the original, but geometric details
are still almost preserved. The simplified mesh is denoted by
M, which is the input of the remaining process.

4 Spatiotemporal key frame sampling

The length of an input RGB-D stream can vary from several
hundreds to thousands of frames, according to the scale of the
target scene to be reconstructed. Such a long stream contains
a lot of redundant data, most of which are less useful for tex-
ture map generation. Also, the color image stream captured

by a handheld camera suffers from motion blurs that would
lower the quality of the generated texture map. By sampling
the input images according to the uniqueness and quality, we
can accelerate the texture generation process and obtain a
better quality texture map. We call this key frame selection
process spatio-temporal sampling.

4.1 Temporal sampling using blurriness

We first sample the images in the temporal domain by select-
ing relatively less blurred frames.We use themethod of Crete
et al. [5] to measure the blurriness of input frames. Simi-
larly to Zhou and Koltun [17], we select key frames one by
one with the smallest blurriness values. Specifically, we first
check the blurriness of σmax frames from the beginning of the
stream and choose the key framewith the smallest blurriness.
We then skip σmin frames from the last selected key frame to
avoid redundant frames. Then again, we check σmax frames
from the last skipped frame to select the next key frame and
repeat the process. We used σmin = 5 and σmax = 30 for all
experiments in this paper.

Note that we use a shorter time interval (several frames)
for key frame selection than [17], which uses 1–5 s for the
interval. Our method aims to handle reconstruction of indoor
scenes rather than small objects. In a stream capturing an
indoor scene with clutters, small parts of the scene could be
captured only in small portions of the stream. If a long time
interval is used for key frame selection,we can easilymiss the
details of the scene. Therefore, we use a shorter time interval
to select as many high-quality key frames as possible, and
filter out the redundant frames using spatial sampling.

4.2 Spatial sampling using uniqueness

After sampling key frames in the temporal domain with blur-
riness, we perform sampling in the spatial domain. To reduce
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Fig. 3 Frame uniqueness measurement. a Temporally sampled key
frames It , b unique regions (blue points) and overlapping regions (red
points) of a frame I against the frame set It

redundant information, we sample key frames that contain
unique information which is distinguishable from others. To
measure the uniqueness of a frame I , we first define the
uniqueness of a pixel p in I against a set of temporally sam-
pled key frames It as:

qI (p) =
{
1, if |zI (p) − zI ′(p′)| > σs ∀I ′ ∈ It ,

0, otherwise,
(1)

where p′ is the 2D position when p in I has been projected
onto I ′, zI (p) is the depth value of pixel p in I , and σs is a
user-specified overlapping threshold. That is, a depth pixel is
unique when it does not overlap with any other depth pixels
in It . Figure 3 shows examples of unique and overlapping
depth pixels. Based on the pixel uniqueness, the uniqueness
of frame I is evaluated as:

Q(I ) = 1

|I |
∑
p∈I

qI (p), (2)

where |I | is the number of pixels in I .
Evaluating the uniqueness for all temporally sampled key

frames would be time consuming, as we should project every
pixel in each key frame onto all other key frames.As the num-
ber of key frames increases, computation time for evaluating
the uniqueness increases accordingly. For a large-scale scene
that consists of thousands of images, it may take few hours.
To reduce the computation time, we can use two types of
acceleration: downsampling and parallelization.

We can approximate the frame uniqueness by down-
sampling an image into uniform grids and only using the
uniqueness of representative points of the grids. We use the
average of all depth pixels in each grid as the representative
point. In our implementation, we use 10× 10 uniform grids.
Since each grid can cover a large region of the scene, we
use the overlapping threshold σs = 20 cm for all results in
this paper. While preserving the quality, this approximation
gives huge acceleration compared to full image processing.

Fig. 4 Results with/without frame uniqueness approximation. The
quality of the final rendering result is not much affected

Figure 4 shows that the quality of the final rendering result
is not much affected by this approximation. Another option
for acceleration is to use GPU for parallel implementation
of the full image sampling. Our CUDA implementation of
the frame uniqueness computation based on full images runs
twice as fast as the CPU-based downsampling version.

After calculating the uniqueness of all key frames, we
remove the key frames with the smallest uniqueness values
one by onewhile updating the uniqueness of neighboring key
frames after each removal. Two images are neighbors when
they have overlapped representative points. The removal
process continues until the smallest uniqueness becomes
large enough, resulting in key frames that have enoughunique
information among each other. This spatial sampling of key
frames can be efficiently performed bymaintaining a priority
queue for the uniqueness values.

As a result of temporal and spatial sampling, the size of
the input stream is significantly reduced from thousands to
tens or hundreds of frames. Despite this aggressive sampling,
the quality of final rendering results are not much degraded,
as demonstrated in Fig. 10.

5 Texture map generation

After we have chosen a set of key frames using spatiotempo-
ral sampling, we use them to generate a global texture map
for the simplified 3D mesh. This process consists of two
steps, global texture map generation and texture coordinate
optimization. The first step generates a global texture map
by UV parameterization of the 3D mesh and blending of key
frame images. The second step refines the generated global
texturemap by optimizing an objective function that imposes
photometric consistency on blended images.

5.1 Global texture map generation

We generate a single global texture map for the simplified
3D mesh M by blending the key frames {Ii }. Let {vi } and
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Fig. 5 Sub-texture coordinate estimation.Eachvertex is projectedonto
the sub-textures (key frames) to estimate the corresponding 2D sub-
texture coordinates

{ fi } denote the vertices and faces of M, respectively. First,
for each face f , we find a set of key frames in which f is
visible.We call this set sub-textures of f . At the same time, as
Fig. 5 shows, we estimate the 2D sub-texture coordinates of
vertices of each face f by back-projecting the vertices onto
each sub-texture of f . As each face hasmultiple sub-textures,
a vertex vi of face f has multiple sub-texture coordinates
ui j that are the projected coordinates of vertex vi onto sub-
textures I j . Then, each sub-texture can be mapped onto the
mesh M using the sub-texture coordinates.

After we have estimated the sub-texture coordinates of all
vertices, we generate a global texture map by blending the
sub-textures of each face. Blending weight of a sub-texture
I j for vertex vi is defined as wb

i j = μ cos(θ), where θ is the
angle between the surface normal of vi and the view direction
of the camera for I j , and μ is a smooth weighting function
that gives a higher weight when the sub-texture coordinates
ui j is close to the image center of I j .

After the blending, the blended sub-texture of each face
is copied onto the global texture map, which is a huge image
that contains all blended sub-textures. As the reconstructed
3D mesh does not have its own texture mapping informa-
tion, we should generate texture coordinates of all vertices
using UV parameterization. In our method, texture coordi-
nates are determined using the least squares conformal map
generation method [8] that minimizes angle deformations of
surface triangles during the parameterization. Figure 6 shows
the generated global texture map and sub-textures that have
been blended for the fountain dataset.

Although we sampled the key frames considering spatial
redundancy, there still can be too many key frames from
which a face is visible. For computational efficiency, we limit
the number of sub-textures for each face. We choose the top
k key frames that have the highest blending weights wb

i j for
the sub-textures. We used k = 10.

The initially generated global texturemapmay suffer from
blur and ghosting artifacts, which are caused by an impre-
cisely reconstructed 3Dmodel and optical distortions in color
images. To eliminate these artifacts and enhance the render-

Fig. 6 Generated global texture of the fountain dataset and some of
sub-textures blended for the global texture

ing quality, we optimize the global texture map by updating
the sub-texture coordinates of vertices to maximize the pho-
tometric consistency among the overlapping sub-textures.

5.2 Global texture map optimization

Differently from Zhou and Koltun’s method [17] that opti-
mizes the non-rigid transforms of key frames, we directly
optimize the sub-texture coordinates of each vertex of the
simplified mesh M. Since M contains relatively larger faces
than the initial dense mesh M0, measuring the photomet-
ric consistency at only vertices would not suffice to refine
the global texture map. To consider the consistency over the
entire mesh, we choose a few sample points on each face.
Let Si ( f, w) denote the sub-texture coordinates on Ii of a
sample point from face f , which are determined by the lin-
ear combination of the sub-texture coordinates of the three
vertices of f with a combination weight w.

Our objective is to minimize the inconsistency among
the sub-textures by modifying the sub-texture coordinates
of vertices. Let u denote the concatenation of all sub-texture
coordinates that we want to optimize. Also, let F = { fi } and
V = {vi }. We can quantify the sum of photometric inconsis-
tency of all sample points on F as:

E(u) =
∑
f ∈F

C( f ), (3)
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where C( f ) is inconsistency among sample points on the
sub-textures I f belonging to a face f . We compute C( f ) as
the inconsistency sum of image pairs in I f :

C( f ) =
∑

Ii ,I j∈I f
M( f, Ii , I j ), (4)

where M( f, Ii , I j ) is a function that measures the inconsis-
tency of sample points on f between sub-textures Ii and I j .
It is defined as:

M( f, Ii , I j ) =
∑
w∈w

(
�i (Si ( f, w)) − � j (S j ( f, w))

)2
, (5)

where �i (u) is the color value at the 2D texture coordinates
u on Ii , and w is the set of combination weights for the
sampled points on f . As S( f, w) is a function of sub-texture
coordinates of vertices, we can obtain optimal sub-texture
coordinates u by minimizing Eq. (3).

To efficiently minimize the objective function in Eq. (3),
we introduce two modifications. First, we re-arrange the
objective with respect to the vertices rather than faces. Let
Fv be the 1-ring neighbor faces of a vertex v, which is the
set of faces that contain v as one of their three vertices. Then
the modified objective can be written as:

E(u) = 1

3

∑
v∈V

∑
f ∈Fv

C( f ). (6)

Each face consists of three vertices, so Eqs. (3) and (6) are
equivalent.

Second, we introduce an auxiliary variable P( f, w),
which is the proxy color of a sample point on f with a com-
bination weight w. Then we re-formulate Eqs. (4) and (5)
to:

C( f ) =
∑
Ii∈I f

M( f, Ii ), (7)

M( f, Ii ) =
∑
w∈w

(
�i (Si ( f, w)) − P( f, w)

)2
. (8)

As a result, our objective can be written as E(u,P),
where P is the concatenated vector of all auxiliary variables
P( f, w). For simplicity, in the optimization process, we use
grayscale values of the key frame images, so �i (Si ( f, w))

and P( f, w) are scalar values.

5.3 GPU-based alternating solver

Our objective E(u,P) is a non-linear least squares function
of sub-texture coordinates u and auxiliary variables P, which
can be minimized using the Gauss–Newton method. Similar

to Zhou and Koltun [17], we can also use alternating opti-
mizations that optimize u and P separately while fixing the
other. However, for a large reconstructed model such as a
whole room, we need more drastic acceleration because the
number of parameters of the objective, even for the simpli-
fied mesh, can be huge, up to k|V|. To optimize the objective
with such a large number of parameters in practical compu-
tation time, we optimize the objective function in parallel by
exploiting the locality of the problem.

Our alternating optimization consists of two stages. At
the first stage, we optimize P while u is fixed. Then it can be
easily shown that the objective is minimized when

P( f, w) = 1

|I f |
∑
Ii∈I f

�i (Si ( f, w)), (9)

for all f ∈ F and w ∈ w. The values of P( f, w) are inde-
pendent of each other, so they can be computed quickly in
parallel.

At the second stage, we optimize u, while P is fixed. This
reduces to a non-linear least square problem as follows:

E(u) = 1

3

∑
v∈V

∑
f ∈Fv

∑
Ii∈I f

∑
w∈w

r( f, Ii , w)2, (10)

where r( f, Ii , w) is the residual considered in Eq. (8):

r( f, Ii , w) = �i (Si ( f, w)) − P( f, w). (11)

Then single Gauss–Newton update is defined as:

ua+1 = ua + �u, (12)

where �u is computed as the solution of the equation:

J (ua)T J (ua)�u = −J (ua)T R(ua). (13)

Ris the residual vector that is the concatenation of r( f, Ii , w)

for all f, Ii , and w.J is the Jacobian of R.

Fig. 7 3D reconstructed models used in our experiments: from top
left, fountain, stonewall, totempole, copyroom, lounge, burghers. The
models were reconstructed using the methods of Zhou and Koltun [16,
17]
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Although the Jacobian matrix J is quite sparse, its size
is vast for a large 3D model. For example, the reconstructed
3D model of the lounge dataset in Sect. 6 consists of more
than 2M (millions) vertices originally. Even if we applymesh
simplification to the model, the number of vertices should be
more than 0.1 M for preserving the details. Then the num-
ber of parameters in the optimization goes up to 1 M and
the dimension of the Jacobian matrix becomes 1 M × 1 M.
Solving such a large linear system on GPU is non-trivial, and
the optimization is not readily parallelizable.

To parallelize the optimization, we exploit the locality of
the problem. As in Sect. 5.2, let Fv be the one-ring neighbor-

Fig. 8 Progress of the iterative texture optimization on a cropped
region of the fountain model. As the objective function is minimized,
the photometric consistency of the generated texture map is improved
drastically. It is best viewed on a color monitor

hood of a vertex v. A change of the sub-texture coordinates
of v only affects the consistencies, i.e., residuals, of sam-
ple points on the faces in Fv . In other words, the consistency
among sub-textures around v is only determined byFv . Thus,
we can subdivide the entire Gauss–Newton update prob-
lem into smaller independent sub-problems that only update
the sub-texture coordinates of single vertices. These small
sub-problems can be solved by performing a parallel vari-
ant of Schwarz alternating method [7] that updates the inner
variables (texture coordinates of v) using a Gauss–Newton
update while keeping the boundary variables (texture coor-
dinates of one-ring neighbor vertices of v).

Specifically, the parallel Gauss–Newton update works as
follows. As described above, each Gauss–Newton update
needs to solve the linear system which is a function of the
residuals. If we ignore all the residuals that are independent

Fig. 9 Rendering results of the totempolemodel simplified to different
numbers of faces. Even with only 10 K faces, the rendering quality is
not much degraded, while the optimization takes less than 3 s. Note that
the original mesh consists of more than 1 M faces

Table 1 Test dataset statistics
and the computation time of our
method

Model # of images # of key frames # of original faces # of simplified faces Time for
optimization
(s)

Fountain 1086 27 532,806 10,000 2.6

Totempole 2700 103 1,285,993 10,000 2.5

Stonewall 2700 113 4,345,379 65,000 9.5

Lounge 3000 106 3,150,436 130,000 16

Copyroom 5490 155 5,062,748 130,000 18

Burghers 11,230 319 6,858,620 195,000 31

For a large-scale model, the proposed GPU-based alternating optimization takes only few tens of seconds to
obtain a photometrically enhanced global texture map
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of a vertex v and assume that the sub-texture coordinates of
vertices other than v in Fv are fixed, then the linear system
in Eq. (13) becomes very small, and evaluating the residual
and numerical calculation of the inverse of a 2 × 2 matrix
is only required. With this simplification, we can use single
kernel threads on GPU to perform parallel Gauss–Newton
updates for the sub-texture coordinates of vertices. To prop-
agate the updated sub-texture coordinates to the one-ring
neighborhood aggressively, we update u twice for each P
update. In Sect. 6, the experimental results show the effec-
tiveness of our GPU-based alternating solver, which can
handle optimization for a large 3D model within tens of sec-
onds.

6 Experimental results

We performed various experiments to evaluate the proposed
method. We tested our method on several 3D reconstructed
models with RGB-D streams (Fig. 7), provided by Zhou
and Koltun [16,17], which were taken using an Asus Xtion

Fig. 10 Rendering results with/without spatial sampling. Spatial sam-
pling removes a half of key frames, which are redundant, preserving the
rendering quality

Pro Live RGB-D camera. Except the fountain data, we
used 3D meshes and camera trajectories that were estimated
by [16]. For the fountain data, we used voxel hash-based
reconstruction [11] to reconstruct the 3D model and esti-
mated the camera trajectories from the given RGB-D images.
All experiments were performed on a PC with an Intel i7
4.0 GHz CPU, 16 GB RAM and Nvidia GeForce GTX
TITAN X GPU. The implementations of algorithms [6,8]
in MeshLab [3] and Blender [2] were used for mesh sim-
plification and UV parameterization of a simplified mesh,
respectively.

Timing dataOur method refines the global texture map using
iterative optimization. Figure 8 shows that the rendering
results are progressively refined through the optimization of
the sub-texture coordinates. The blurry texture map becomes
sharp in only few tens of iterations.We used 100 iterations for
all experiments in this paper. Table 1 shows computation time
and other statistics of our method. Our spatiotemporal key
frame sampling and the initial global texture generation takes
a few seconds, depending on the size of the image stream.
Texture map optimization takes several to tens of seconds,
which is much faster than that of Zhou and Koltun [17]. For
example, for the fountain model, Zhou and Koltun [17] took
more than 200 s according to their paper, but our optimization
only takes 2.6 s, taking 26 ms per iteration.
Scalability With the GPU-based alternating solver, our
approach has much higher scalability than that of [17]. Zhou
and Koltun [17] formulated the optimization problem as n
independent linear systems with 720 variables, where n is
the number of key frames. In that case, different linear sys-
tems cannot be solved in parallel on a GPU, because solving
each system would need multiple kernel threads. In contrast,
exploiting the locality, ourGPU-based alternating solver sep-

Fig. 11 Rendering result of the fountainmodel with our generated texture map. We compare the result with the volumetric blending approach [11]
and the color map optimization [17]. Note that the overall difference of color balances between [17] and ours has come from the difference in the
input image streams
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Fig. 12 Texture map generation and optimization results for large-scale 3D reconstructed models (lounge, copyroom, burghers). White holes in
the rendering results have come from the missing geometry of the reconstructed models

arates the problem into m independent linear systems with
only two variables, where m is the number of vertices of the
simplified mesh. Many of these small linear systems can be
solved in parallel on a GPU, as each system can be handled
by a single kernel thread with few arithmetic operations.

Mesh simplification We first evaluate the robustness of our
method against mesh simplification in terms of the render-
ing quality. As described in Sect. 5.3, the processing time
of texture coordinate optimization depends on the number
of vertices in the simplified mesh, so we can achieve more
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acceleration with aggressive mesh simplification. Figure 9
demonstrates that the rendering quality is still satisfactory
even when the number of faces is extremely reduced to 1%
of the original.

Adaptive samplingWe also evaluate the effectiveness of our
spatiotemporal adaptive sampling. Temporal sampling based
on theblurriness reduces the number of key framesdepending
on the length of the input stream. Then the spatial sampling
based on uniqueness reduces the key frame set based on
the scale of the scene. It shortens the processing time of
texture map optimization by eliminating redundant images
which are not necessarily useful for reconstructing the 3D
model. Figure 10 shows the rendering results when only
temporal sampling is applied and when both temporal and
spatial samplings are applied. By performing spatial sam-
pling, we reduced the number of sampled key frames from
214 to 113 while preserving the rendering quality. Note that
the images participating in the sub-texture blending could
have been changed due to the spatial sampling, causing some
color differences between the rendering results.

Visual comparison For the fountainmodel, we compared our
result with Zhou and Koltun [17] using the reconstructed
mesh of [17] provided by the authors. Figure 11 shows a
visual comparison. The result in [17] was generated from
a high-resolution (1920 ×1080) color image stream, which
was not available to us. Instead, we used a low-resolution
(640 × 480) stream provided by the authors to generate our
global texture map. Nevertheless, the rendering results are
quite comparable, while our processing time is about 100×
faster. Note that the color balance of the rendering result in
[17] differs from ours, because the input color streams are
not identical. We applied auto white balancing to our input
color stream to compensate for the difference.

Large-scale model Due to the adaptive key frame sampling
and GPU-based alternating optimization, our approach is
scalable to handle large-scale 3D reconstruction. We demon-
strate the scalability of our method by generating texture
maps for reconstructed 3D indoor scenes. We tested three
models, copyroom, lounge, burghers, which consist of more
than 5 M faces on average. Each model is simplified to 130
or 195 K faces based on the geometric complexity. Figure 12
shows several rendering results from different viewpoints.
These examples demonstrate that our method can be used to
generate precise texture maps needed for visualizing large-
scale 3D reconstructed indoor scenes.

7 Conclusions

Differently from previous works based on voxel or ver-
tex colors, this paper proposed a texture mapping-based

approach for representing and rendering color information of
a 3D reconstructed model. Reconstructed geometric models,
especially indoor scenes, equipped with precisely generated
texture maps can be used as 3D model contents for various
applications, such as virtual reality and 3D fabrication.

Limitation and future work Our algorithm generates a single
global texturemap for awhole 3D reconstructed scene.When
the algorithm is applied to a large-scale scene, the required
size of the global texture map could become too large. Subdi-
viding a large model into small ones and generating separate
texture maps can resolve this issue. Our texture map opti-
mization method only considers local information (one-ring
neighborhood) of each vertex to enhance the photometric
consistency. Exploiting this locality enables our method to
work very fast with parallel implementation, but prohibits
the method from working with a dense mesh where local
information is limited. As shown in Fig. 6, our global texture
map currently contains lots of holes on which no vertices are
assigned. Advanced mesh parameterization methods [9,13]
would be useful to resolve this problem.
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