
Example-based Synthesis of 3D Object Arrangements

Matthew Fisher∗

Stanford University
Daniel Ritchie∗

Stanford University
Manolis Savva∗

Stanford University
Thomas Funkhouser†

Princeton University
Pat Hanrahan∗

Stanford University

Input Scenes Synthesized ResultsDatabase

...

Figure 1: Example-based scene synthesis. Left: four computer desks modeled by hand and used as input to our algorithm. Right: scenes
synthesized using our algorithm. Our algorithm generates plausible results from few examples, incorporating object composition and ar-
rangement information from a database of 3D scenes to increase the variety of its results.

Abstract

We present a method for synthesizing 3D object arrangements from
examples. Given a few user-provided examples, our system can
synthesize a diverse set of plausible new scenes by learning from a
larger scene database. We rely on three novel contributions. First,
we introduce a probabilistic model for scenes based on Bayesian
networks and Gaussian mixtures that can be trained from a small
number of input examples. Second, we develop a clustering algo-
rithm that groups objects occurring in a database of scenes accord-
ing to their local scene neighborhoods. These contextual categories
allow the synthesis process to treat a wider variety of objects as
interchangeable. Third, we train our probabilistic model on a mix
of user-provided examples and relevant scenes retrieved from the
database. This mixed model learning process can be controlled to
introduce additional variety into the synthesized scenes. We evalu-
ate our algorithm through qualitative results and a perceptual study
in which participants judged synthesized scenes to be highly plau-
sible, as compared to hand-created scenes.

Keywords: 3D scenes, procedural modeling, automatic layout,
probabilistic modeling, data-driven methods

Links: DL PDF WEB DATA

∗e-mail: {mdfisher, dritchie, msavva, hanrahan}@stanford.edu
†e-mail: funk@cs.princeton.edu

1 Introduction

Large-scale games and virtual worlds demand detailed 3D envi-
ronments. Creating this content requires a lot of time from many
artists. In this paper, we focus on scenes: environments composed
of arrangements of 3D objects. They include many typical envi-
ronments in games, animation, and virtual worlds, including most
indoor and human-made environments.

A promising solution to this content-creation bottleneck is
example-based synthesis: algorithms that can generate new envi-
ronments similar to a set of input examples. A user provides the
system with examples illustrating the desired type of scene, and
the system returns a large set of synthesized results. The user then
selects the results that she likes best from a ranked list. The user
should not have to browse for a long time to find good scenes; as
a rule of thumb, at least one out of every three synthesized results
should be usable.

To support a tool such as the one described above, there are several
criteria an example-based synthesis algorithm should meet. First,
it should generate plausible scenes; they should look believable to
a casual observer. Second, it should generate a variety of scenes;
they should not be copies or small perturbations of the examples.
Third, users should only have to provide a few examples, since they
are time-consuming to create.

These goals are challenging to meet, and some stand in conflict
with one another. Generating a variety of scenes is difficult when
the system can only draw data from a few examples. Scenes can
contain a large number of different objects, the full range of which
can be difficult to specify in a few examples. Just because the user
omitted some type of object in the examples, does that mean she
does not want it in her scenes? Some objects are connected via pre-
cise functional and geometric relationships, while others are more
loosely coupled. To generate plausible scenes, an example-based
algorithm must infer these relationships from data without addi-
tional user guidance.

In this paper, we present an example-based scene synthesis method
that meets the above challenges through three main contributions.

http://doi.acm.org/10.1145/2366145.2366207
http://portal.acm.org/ft_gateway.cfm?id=2366207&type=pdf
http://graphics.stanford.edu/projects/scenesynth
http://graphics.stanford.edu/projects/scenesynth

Our first contribution is a probabilistic model for scenes. It consists
of an occurrence model, which specifies what objects should be in
the generated scenes, and an arrangement model, which specifies
where those objects should be placed. The occurrence model uses a
Bayesian network, drawing on recent work in example-based shape
synthesis [Kalogerakis et al. 2012]. The arrangement model uses a
novel mixture of Gaussians formulation.

Our second contribution is a clustering algorithm that automatically
discovers interchangeable objects in a database of scenes and forms
them into groups. We call these groups contextual categories. A
contextual category can contain a greater variety of objects than the
basic categories (i.e. “table,” “chair,” “lamp”) used by most appli-
cations. To find these categories, our algorithm exploits the insight
that objects that occur in similar local neighborhoods in scenes (i.e.
“on a plate,” “beside a keyboard”) are likely to be considered in-
terchangeable when building plausible scenes. Using contextual
categories, our algorithm can incorporate a wider variety of objects
in synthesized scenes.

Our third contribution is a method for learning the probabilistic
models from a mix of example scenes and scenes from a large
database. In doing so, we treat the database as a “prior” over pos-
sible scenes. This provides a wide variety of scene content, and the
examples guide that content toward a particular desired target. We
allow the user to control the strength of the database prior through
simple parameters, trading similarity to examples for increased di-
versity. Using these mixed models, our algorithm can synthesize
scenes with a greater variety of both objects and arrangements.

Our results demonstrate the utility of our method for synthesizing
a variety of scenes from as few as one sparsely populated example.
Through a judgement study with people recruited online, we found
that approximately 80% of synthesized scenes are of adequate qual-
ity to replace manually-created ones. This level of quality is more
than sufficient for a user to browse a sorted list and find synthesized
scenes of interest.

2 Background

Related work has tackled problems similar to example-based scene
synthesis. While our algorithm uses some of the same underlying
techniques, none of these methods alone are sufficient to meet the
goals of this paper.

Component-based object modeling Recent work has demon-
strated a graphical model for individual objects (such as chairs,
planes, and boats) that encodes the cardinality, style, and adjacen-
cies of object sub-components [Kalogerakis et al. 2012; Chaudhuri
et al. 2011]. This model can be trained on input objects of a par-
ticular class and sampled to generate new objects that are recom-
binations of input object components. This approach is well-suited
for object synthesis, since objects in a given class typically have
few functional sub-components whose placement is well-specified
by mesh adjacency information. Scenes do not share these proper-
ties: they can contain dozens of different, loosely-related objects,
and each object is free to move continuously on its supporting sur-
face. Our algorithm uses a separate arrangement model to capture
the continuous spatial relationships between many possible objects.
The occurrence model determines which objects should go in a
scene and is based on the Bayesian network formalization used in
Chaudhuri et al. [2011], with several modifications to better support
scene synthesis.

Evolutionary object modeling Another approach to object syn-
thesis evolves a set of diverse objects that is iteratively fit to a user’s

preferences [Xu et al. 2012]. With this scheme, generated objects
are always an interpolation of the initial input set of objects. Thus,
the algorithm cannot introduce any new object sub-components that
were not present in the input set. This restriction is acceptable for
objects, since they typically have a handful of functional subcompo-
nents. Scenes can contain dozens of loosely-related objects, how-
ever, so using this method on a few input scenes will generate repet-
itive content. Since our algorithm extracts contextual categories
and learns mixed probabilistic models from a database of scenes, it
can incorporate new types of objects not found in the examples and
increase the variety of synthesized results.

Inverse procedural modeling Researchers have also synthe-
sized objects from examples by inferring a procedural model that
might have generated those examples [Bokeloh et al. 2010]. This
system searches for partial symmetries in the example object geom-
etry, cuts the objects into interlocking parts based on those symme-
tries, and then generates a grammar that can synthesize new objects
by stitching compatible parts together. This method works well
with objects that are defined by repeated, regular sub-structures—
a property that most scenes do not exhibit. Salient relationships in
scenes cut across levels in the scene graph hierarchy, so context-free
grammars are unlikely to model them well. In contrast, our prob-
abilistic models for object occurrence and arrangement can learn
salient existence and placement relationships between any pair of
objects.

Automatic furniture layout Outside the domain of object syn-
thesis, methods have recently been developed for optimizing the
layout of furniture objects in interior environments [Merrell et al.
2011; Yu et al. 2011]. These methods define an energy functional
representing the ‘goodness’ of a layout, and then use stochastic
optimization techniques such as simulated annealing to iteratively
improve an initial layout. While they can generate plausible and
aesthetically pleasing furniture arrangements, these methods do not
completely synthesize scenes, since they require a user to specify
the set of furniture objects to be arranged. In contrast, our al-
gorithm chooses what objects exist in the scene using its occur-
rence model. These methods also require non-example input: Yu
et al. [2011] uses example layouts but requires important object re-
lationships to be marked, and Merrell et al. [2011] uses domain-
specific principles from interior design and requires a user in the
loop. Our arrangement model, based on Gaussian mixtures and
Gaussian kernel density estimation, can be trained entirely from
data. It uses a heuristic for relationship salience to automate ar-
rangement of scenes with dozens of objects.

Open-world layout Closely-related recent work seeks to auto-
matically generate ‘open-world’ layouts, which are layouts with an
unspecified number of objects [Yeh et al. 2012]. The underlying
generative model is a probabilistic program, which is compiled into
a factor graph representation and sampled using a variant of Markov
Chain Monte Carlo. The algorithm succeeds at synthesizing inte-
rior environments, such as coffee shops, with varying shapes and
scales. However, the underlying probabilistic program is written
by hand and can only generate patterns that were expressed in the
code. In contrast, our algorithm learns its generative model from
data and does not require any programming ability on the part of
the user.

3 Approach

The goal of this paper is to develop a method for synthesizing
scenes from a few input examples. The fundamental challenge is
that scene synthesis is hard due to the number of possible configu-

rations. Even for a single type of scene with a modest number of
objects, such as an office desk scene, the restricted set of plausi-
ble configurations that we would like to synthesize is large. Fur-
thermore, a user who provides a few examples can only express
a small number of desired configurations, but the assumption that
they would like synthesized results to conform to only the objects
and arrangements in the examples is usually false. We need to ad-
dress this combination of a large output domain and a restricted set
of inputs with an approach that avoids generating repetitive results
while retaining plausibility and similarity to the examples.

Our insight is that, much like users have diverse background knowl-
edge from which they draw to construct examples, we can turn to a
large database of scenes in order to “fill in the gaps” between the ex-
amples. The scene database provides many models instantiated in
plausible configurations which we exploit in two ways to improve
the diversity of our synthesized scenes. Firstly, we compute contex-
tual categories by using object neighborhoods in scenes to group
together objects that are likely to be considered interchangeable.
These contextual categories then allow the synthesis algorithm to
use more objects in any given role. We describe a simple algorithm
to compute these categories using bipartite matching and hierarchi-
cal agglomerative clustering. Secondly, we treat the scene database
as a prior over scenes and train our probabilistic model on both the
examples and relevant scenes from the database. We use a recently-
developed similar-scene retrieval technique to choose scenes rel-
evant to the examples and introduce diversity without impacting
plausibility. The user can control the degree of mixing between the
two data sources via intuitive blending parameters.

For our investigation, we recruited participants to construct a
database of interior scenes. Participants assembled scenes using
a simple interface that allows placement, rotation, and scaling of
models from Google 3D Warehouse. The scenes are segmented
cleanly into individual objects, and each object is tagged with a ba-
sic category label such as “clock” or “bed.” Each object is also
rooted to a point on the surface of another object; the set of all such
“parent-child” relationships defines a static support hierarchy over
the scene that our algorithm exploits. Section 9 describes the results
of our database construction effort in more detail.

Our system begins by retrieving contextual categories from a large
database of scenes (Section 4). Given these categories, it then learns
mixed models from both the user provided examples and the scene
database (Section 5). It first trains the occurrence model, which
describes what objects can be in synthesized scenes (Section 6).
It then trains the arrangement model, which describes where those
objects can be placed (Section 7). Finally, it samples from these
probabilistic models to synthesize new scenes (Section 8).

4 Contextual Categories

We would like our synthesis algorithm to be able to draw from
a wide variety of objects in order to increase the diversity of our
scenes. Previous work addressing furniture layout used predefined
sets of basic functional categories, such as “chairs” [Merrell et al.
2011; Yu et al. 2011]. For scene synthesis, such a categorization
can be restrictive, leading to repetitive scenes. We note that many
objects are interchangeable with other objects not necessarily from
the same basic category. For example, a contextual category of “ob-
jects that belong on a plate in a kitchen” may contain many different
basic categories such as “apples,” “bread,” “cookies,” etc.

Our insight is that such interchangeable objects are frequently sur-
rounded by objects that are similar both in type and arrangement.
We use the term neighborhood to refer to the arranged collection of
models around an object. This insight suggests that neighborhood

similarity can predict interchangeability to automatically construct
contextual categories.

Neighborhood similarity To group objects using the similarity
of their neighborhoods, we must first quantify neighborhood simi-
larity. We reduce each object x to its centroid point plus its basic
category label Lx. Comparing two neighborhoods then reduces to
matching two labeled point sets, which is a well-studied problem in
computer vision and structural bioinformatics. Popular methods in-
clude techniques based on geometric hashing [Wolfson and Rigout-
sos 1997], bipartite matching [Diez and Sellarès 2007], and find-
ing maximum-weight cliques in association graphs [Torsello et al.
2007].

Our approach is based on bipartite matching. To compare objectsA
and B, we transform the database scenes in which they occur such
that A and B are at the origin and the normals of their supporting
surfaces are aligned with ~z = [0, 0, 1]T . We form the complete
bipartite graph between the objects in these two scenes, where the
weight of each edge in the graph is:

k(a, b) = 1{La = Lb} ·G(|~a−~b|, σd) ·G(min(|~a|, |~b|), σn)

Here, 1{} is the indicator function, ~o is the vector-valued position
of object o and G(x, σ) = e−x

2/2σ2

is the unnormalized Gaussian
function. This equation states that objects should only match if
they have the same basic category and if the distance between them
is small. The third term decreases the significance of matches that
occur far away from the objects that we are comparing (A and B).
In our implementation, σd = 15 cm and σn = 90 cm.

We solve for the maximum-weight matching M in the graph using
the Hungarian algorithm [Kuhn 1955]. Our neighborhood similar-
ity function is then:

n(A,B) =1{isLeaf(A) = isLeaf(B)}·

G(
|A| − |B|

min(|A|, |B|) , σs) ·
∑

(a,b)∈M

k(a, b)

where isLeaf(o) = true if object o is a leaf node in its scene’s static
support hierarchy, and |o| is the diagonal length of the bounding-
box of object o. The first term states that two objects are similar if
they serve the same support role (i.e. they either statically support
other objects or do not). The second term compares the sizes of the
objects themselves, and the third term compares the similarity of
their neighborhoods. We use σs = 1.5.

We then discretize all possible rotations ofB’s neighborhood about
~z and find the orientation for which n(A,B) is strongest

n̄(A,B) = max
θ
n(A, rot(B,~z, θ))

and then normalize the result to be in the range [0, 1]

n̂(A,B) =
n̄(A,B)

max(n̄(A,A), n̄(B,B))

Clustering We cluster all objects in all database scenes using hi-
erarchical agglomerative clustering (HAC) [Steinbach et al. 2000],
where the merge score between two clusters C1 and C2 is

Merge(C1, C2) = max
A∈C1,B∈C2

(1−λcat)·1{LA = LB}+λcat·n̂(A,B)

The influence of neighborhood similarity is controlled by λcat.
When λcat = 0, clustering only considers basic category labels
and will recover these basic categories exactly. As λcat increases,

objects from different basic categories that occur in similar neigh-
borhoods are encouraged to merge together. For our database,
λcat = 0.7 yielded many useful categories; see Section 9 for ex-
amples. The merge score above is the single linkage criterion for
HAC [Murtagh 1984], which states that two clusters are as similar
as their most similar objects. Since it is susceptible to outliers, in
practice we use the 90th percentile rather than the maximum. We
stop merging when the best cluster merge score is less than a simi-
larity threshold τ = 0.1.

Alignment Our synthesis algorithm requires all objects in a cate-
gory to be aligned in a common coordinate frame. We align our ob-
jects using both their neighborhood similarity and their geometric
features. We first choose an anchor object at random and align the
neighborhoods of all other objects to the anchor’s neighborhood us-
ing the neighborhood similarity function n̂. This process alone can
successfully align objects with strong neighborhood cues, such as
keyboards. To further refine an alignment, we compute the sum of
squared distances for all possible rotations, which has been shown
to be effective at aligning certain categories of 3D models [Kazhdan
2007]. We snap our neighborhood alignment to the nearest local
minima of this inter-object distance function. For some categories
that are sensitive to changes in rotation, such as computer speakers
and alarm clocks, we manually inspect and correct the inter-object
alignments.

5 Learning Mixed Models

Creating many diverse scenes from a small number of examples is
difficult even if we draw upon contextual categories. Frequently,
users intend examples they provide to be rough guides of the type
of scene they would like and may be missing many details, which
the user may not have recalled but has seen in the past. Our insight
is that a database of scenes can act as a prior over scenes and can
be used to fill in missing details or enrich the synthesized scenes.
The degree to which this is a desired behavior may vary depending
on the user and task, so we would also like to control how strong
we want the influence of the prior to be by using intuitive mixing
parameters.

In Sections 6 and 7, we learn two models from a mixture of data
provided by the few examples and a larger scene database. We de-
fine these models here and describe how to mix separate input data
sources but defer discussion of the details of each model to the rel-
evant sections. The occurrence model O(S) is a function which
takes a scene S as input and returns a probability for the static sup-
port hierarchy of the objects in the scene. The arrangement model
A(o, S) is a function which takes an object o positioned within
a scene S and returns an unnormalized probability of its current
placement and orientation.

During synthesis, we cannot blindly draw information from the
database: if the examples depict bedrooms, we don’t want to draw
from bathrooms introducing toilets in our synthesized scenes. The
need to isolate ‘semantically similar’ content from a large database
has been recognized in prior work on data-driven content generation
in computer graphics [Hays and Efros 2007]. During model train-
ing, we retrieve scenes similar to the example scenes E using the
graph kernel-based scene comparison operator described in Fisher
et al. [2011]. To threshold the number of retrieved scenes we sort
them by similarity value and use only the results with more than
80% of the maximum value, forming the relevant set of scenes R.

Our system then learns its probabilistic models from the scenes in
both the examples E and the relevant set R. The extent to which
each data source is emphasized is determined by two mixing pa-
rameters λoccur and λarrange. For these parameters, a value of 0 de-

notes 100% emphasis on E and a value of 1 denotes 100% emphasis
on R.

Mixing the arrangement model is straightforward: we train one
model on R, another model on E, and the linearly interpolate be-
tween them using λarrange. Section 7 describes the procedure for
training a single model.

Mixing the occurrence model is less trivial since it uses Bayesian
networks which cannot simply be interpolated. Instead, we use an
enrichment approach where we replicate each input scene many
times to create a larger training set containingN observations. Each
scene in E is replicated dN(1−λoccur)

|E| e times and equivalently each

scene in R is replicated dNλoccur
|R| e times. The results in this paper

useN = 500. The model is then learned as described in Section 6.

6 Occurrence Model

We learn from the replicated set of scenes described in Section 5
a model O(S) over the static support hierarchy of a scene S. Our
support hierarchy model is broken down into two parts. First, we
use a Bayesian network B(S) to model the distribution over the set
of objects that occur in a scene. Second, given a fixed set of objects
we use a simple parent probability table to define a function T (S)
that gives the probability of the parent-child connections between
objects in a scene.

6.1 Object Distribution

Following previous work on learning probabilistic models for part
suggestion in 3D object modeling, we use a Bayesian network
to represent our learned probability distribution [Chaudhuri et al.
2011]. We can sample from this Bayes net to produce plausible sets
of objects that do not occur in the examples. Prior to performing
structure learning, we transform the network to reduce the number
of free parameters introduced, which is important when learning
from a small number of examples. We also constrain our Bayesian
network to guarantee that the set of objects generated can be con-
nected together into a valid static support hierarchy.

We start by representing each input scene with a category frequency
vector that counts the number of times each category occurs in the
scene. We consider these vectors to be observations of discrete ran-
dom variables over which we want to learn a Bayesian network.
To guarantee that our network generates plausible scenes, we will
define below a set of constraints that specify edges which must
be present in the learned network. Given these edge constraints,
we use a standard algorithm to learn the structure of our Bayesian
network following prior work on object modeling by Chaudhuri et
al. [2011] with the following modifications:

Support constraints Our Bayesian network should guarantee
that for every generated object, there is another object that can sup-
port it. Thus we require that for every category C, the variable
representing that category must be conditional on the variable for
each parent category C′ it has been observed on.

Booleanization Prior to learning, we transform our problem to
better handle the case where we have few input scenes. Each ran-
dom variable in our network has a maximum value that can be
large if that category occurs many times. This makes Bayesian
network learning challenging, as it introduces many free parame-
ters. We address this problem by breaking each discrete random
variable into a set of boolean variables. If a category C occurred

= 1

Lab table Test tube rack Test tube Notebook Calculator

1 1 2 0 0

1 0 1 0 1

1 0 0 1 1

= 1

= 1

= 1

≥ 1

= 2

Parent Edge Boolean Edge Learned Edge

Figure 2: Bayesian structure learning example. We start with three
input scenes and their corresponding category frequency vectors.
At the bottom we show a Bayesian network learned from these vec-
tors. The black edges are enforced by observed static support rela-
tionships. Network booleanization splits the test tube variable into
two nodes and enforces the edge shown in red. In blue, we show one
edge learned by our structure inference algorithm that captures the
positive correlation between multiple test tubes and a test tube rack.

at most M times in an input scene, we introduce M boolean vari-
ables (C ≥ 1), (C ≥ 2), ...(C = M). Higher count boolean
variables can only be true if lower counts are true, so we constrain
our learning algorithm by requiring that each node (C ≥ a) is
a parent of (C ≥ a + 1). After transforming our problem into
a set of boolean variables, we combine the set of booleanization-
enforced edges with the support constraints defined above and ap-
ply our structure learning algorithm. Figure 2 shows an example of
this learning process.

Input enrichment Bayesian structure learning algorithms can re-
sult in undesired correlations when few unique examples are pro-
vided. To help combat this problem, we use a perturbation method
to add variety to our replicated scenes. We form new scenes by
selectively removing objects from each input scene. We define a
decay coefficient for each category e−αR(C) where R(C) is the
fraction of input scenes that contain C (the results in this paper
use α = 4). Ubiquitous categories have small coefficients and are
likely to be preserved, while infrequent categories have large coef-
ficients and are more likely to be removed. Previous work has used
similar perturbation methods to improve the robustness of learning
algorithms for OCR and for speech recognition [Varga and Bunke
2003; Lawson et al. 2009].

6.2 Parent Support

To generate a static support hierarchy over a set of objects, we must
also define a probabilistic model over possible parent-child static
support connections. Let Parents(C) denote the set of categories
that have been observed supporting a given category C in any input
scene. We make the assumption that an object’s support parent de-

pends only on the existence of each category in this set. We build a
parent probability table for each of the 2|Parents(C)| different states
of existence of the parent categories. For each observation of C in
the input scenes, we look at the existence of each possible parent
and record the actual parent in the corresponding parent probabil-
ity table. We use this table to define the probability of any given
parent-child support relationship. The probability T (S) of a given
support hierarchy arrangement in a scene S is taken as the product
of all its constituent support relationships according to this table.

6.3 Final Model

Given the components above, we can define the final probability
of a given support hierarchy as the product of its object occurrence
model and parent support model:

O(S) = B(S)T (S)

whereB(S) is the probability our learned Bayesian network assigns
to the set of objects in the scene, and T (S) is the probability of the
parent-child support hierarchy given the set of objects in the scene.

7 Arrangement Model

We must use the input scenes to learn, for each object category, the
kinds of surfaces it can be placed on, spatial locations where it can
go, and directions it can face. This is a challenging task because ob-
jects can have many valid configurations which are determined by
functional relationships with other objects. People can easily iden-
tify which relationships are salient, but an example-based algorithm
must infer this from data.

Previous object arrangement models do not meet our goals. [Yu
et al. 2011] represents each position and orientation relationship
with a single Gaussian. However, a single Gaussian does not ac-
count for multiple valid configurations. Also, users must specify
which relationships are salient. Finally, their system does not ad-
dress likely supporting surfaces for objects, since it arranged furni-
ture on a flat floor.

We represent position and orientation relationships between all
pairs of object categories using Gaussian mixture models. Gaussian
mixtures can model multimodal distributions, thus handling objects
with multiple valid configurations. We also describe a simple but
effective heuristic for determining relationship saliency using ob-
ject co-occurrence frequencies. Finally, we learn likely placement
surfaces for objects using a simple Gaussian kernel density estima-
tion approach.

7.1 Spatial Placement

From a set of input scenes, we learn a model of how objects are
spatially arranged with respect to one another. Formally, we learn
a probability distribution PC|C′ for every pair of categories C and
C′. PC|C′ describes where category C objects tend to occur in the
coordinate frame of category C′ objects. It is a four-dimensional
distribution over (x, y, z, θ), where [x, y, z] defines an object’s spa-
tial position and θ defines its rotation about the normal of its sup-
porting surface.

To learn these distributions, we first extract training data from the
input scenes. To build robust models we need a large number of
(x, y, z, θ) tuples, but the set of input scenes may be very small.
Consequently, we extract many jittered (x, y, z, θ) samples from
each object; 200 is more than enough, in our experience. We jitter

Pspeaker|desk

Pdining chair|tablePdesk chair|monitor

Pmouse|keyboard

Figure 3: Pairwise spatial distributions for object arrangement.
Distributions are visualized as points drawn from a learned mix-
ture of Gaussians. The bounding boxes for objects in the category
the model is conditioned on are shown in red. Points have been
projected into the xy plane; the z and θ dimensions are not shown.

object positions by α ∼ N (0, 25 cm · I3) and orientations by ω ∼
N (0, 5◦).

We represent PC|C′ with a Gaussian mixture model, trained us-
ing the expectation-maximization algorithm on the data described
above. The number of Gaussians in the mixture is a latent variable;
we choose the value that maximizes the Akaike information crite-
rion [Akaike 1973]. This combats overfitting by favoring a low-
complexity model unless the added complexity significantly boosts
the model’s likelihood. Figure 3 visualizes some of these learned
models.

These distributions should not all be treated equally; we would like
to emphasize ‘reliable’ relationships that occur more frequently
in the input scenes. Thus, we also compute a set of pairwise
weights wC|C′ , which we use in synthesis to indicate the relative
importance of each distribution. wC|C′ = f(C,C′)30/n, where
f(C,C′) is the frequency with which categoriesC andC′ co-occur
in the input scenes, and n is the number of input scenes. As desired,
this weighting scheme emphasizes frequent relationships, where the
definition of ‘frequent’ becomes more stringent with fewer input
scenes.

7.2 Surface Placement

Different objects are supported by surfaces with different physi-
cal properties, often reflecting functional constraints: light switches
and mice are found at particular elevations above the ground, and
keyboards are unlikely to be placed inside a desk drawer. To cap-
ture this knowledge for each category, we observe how objects in
that category are supported by other objects in a set of input scenes.
For each support observation, we record the height above ground
and the area of the supporting surface in a surface descriptor. We
then treat these descriptors as independently sampled vectors in R2

and use kernel density estimation to construct a probability distri-
bution over possible supporting surfaces.

First, we perform mesh segmentation to extract planar support sur-
faces for all objects in the scene database that statically support
other objects. We use a simple greedy region growth algorithm
which handles non-manifold input models and robustly extracts pla-

nar and near-planar surfaces [Kalvin and Taylor 1996].

After segmentation, we compute surface descriptors for all seg-
ments that support any other objects. Each descriptor is a point
(
√

area, height) ∈ R2, where the square root of area enforces con-
sistent units between dimensions. We can estimate the underly-
ing probability density function using any kernel density estimation
method [Silverman 1986]. For each object category C, we approxi-
mate the function by summing Gaussian kernels centered at the R2

point for each surface descriptor. The Gaussian bandwidth is set
using the normal distribution approximation: hC = 1.06σ̂n

(−1/5)
C ,

where σ̂ is the standard deviation of all surface descriptor observa-
tions and nC is the number of observations in the category. This
approximates the variability over surface descriptor space using σ̂
while enlarging the bandwidth to account for less certainty when
fewer observations are available.

We call the estimated density functions UC(s); for a surface s, this
function returns the probability under our model that an object of
category C should occur on s. Figure 4 visualizes this function for
a few object categories.

7.3 Final Model

Given the components described above, we can define the final ar-
rangement model as

A(o, S) = UC(surf(o, S)) ·
∑

o′∈S,o′ 6=o

wCo|Co′ · PCo|Co′ (o)

where surf(o, S) is the supporting surface of object o in scene S.
Intuitively, this distribution combines the probability of o’s surface
placement with the probability of its spatial placement according to
all other objects in the scene.

8 Synthesis

Synthesizing a new scene is straightforward given the models
learned in the previous sections. First, we generate a new static sup-
port hierarchy that defines the objects in the scene and their parent-
child relationships. Then, we determine a plausible spatial layout
for the objects.

8.1 Static Support Hierarchy

The occurrence modelO admits a very efficient sampling approach.
We first use forward sampling to sample from the Bayesian network
learned in Section 6, which generates a set of objects for the scene.
To determine their parent-child support relationships, we indepen-
dently assign parents to the objects in each category by sampling
from the appropriate parent probability table. If the scene contains
multiple instances of the sampled parent category, we choose an in-
stance at random. This procedure samples a valid parent for each
object, but the overall set of parent-child relationships may contain
cycles. We use rejection sampling to generate a valid configuration,
and repeatedly sampling parent-child relationships until an acyclic
assignment is found.

Next, we assign a specific model to each object in the generated
hierarchy. For each category, we compute a consistency probability:
the frequency with which a category occurs two or more times in
an input scene with all objects using the same model. We decide
whether all objects from that category in our scene should use the
same model according to this probability. If not, we choose models
from the category at random.

2.5 2.5 2.5

0 0 07.5 7.5 7.5

[m
]

[m
]

[m] [m]

Figure 4: Left: Map from supporting surfaces on a computer desk onto the 2D surface placement probability density function. Right:
probability density functions for desktop computers and wall clocks.

This procedure can sometimes produce implausible scenes because
some objects might be asked to support more objects than can fit
comfortably on their supporting surfaces. To avoid this problem,
for each object that is supporting children, we compute the total
surface area (after projection into the plane of their contact surface)
of all the supported children. If the total supported surface area is
greater than the total surface area supported by an instance of that
object in the scene database, we reject the scene and resample from
the Bayesian network.

8.2 Object Layout

Given a synthesized support hierarchy, we must determine the exact
position and orientation of its constituent objects. This is challeng-
ing because we want the generated layout to respect both guidelines
implicitly expressed in the examples as well as physical constraints,
such as objects not colliding. To arrange our objects, for each ob-
ject o in the scene we define a density function that describes o’s
preferred configurations:

D(o) = A(o) · L(o) · X (o) · H(o)

A is the arrangement model from Section 7. The other terms are
defined as follows:

Collision Penalty (L) Objects in physically plausible arrange-
ments do not interpenetrate. L(o) = 1 if o does not collide with
any other objects in the scene, and 0 otherwise.

Proximity Penalty (X) The arrangement model A is often mul-
timodal. The modes may represent multiple configurations for a
single object (such as a left or right-handed computer mouse) or
locations for multiple instances of the same type of object (such as
stereo speakers). In the latter case, multiple instances should not
concentrate around the same mode. We prevent this behavior with
X (o) = 1−G(d, µd), where d is the distance from o to the nearest
o′ such that Co

′
= Co, and µd is the average distance between the

instances of Co observed in the examples.

Overhang Penalty (H) In some cases, o’s most likely location
according to the terms defined thus far may leave it hanging off the
edge of its supporting surface. This is not physically plausible. We
address this problem withH(o), which returns the percentage of o’s
projected bounding box that is contained by its supporting surface.

The density function D we have defined typically has a small num-
ber of isolated modes and is near zero almost everywhere else. To

find a good initial layout, our algorithm places each object one at
a time by sampling from D. Objects are placed by order of de-
creasing size, since large objects often constrain the placement of
others.

Finally, the algorithm iteratively improves this initial layout via hill
climbing. Each iteration makes a small perturbation to the object
configurations, as in prior work on automatic furniture layout [Mer-
rell et al. 2011; Yu et al. 2011]. Proposed perturbations are accepted
if they increase the total layout score,∑

o∈S

D(o)

For all the results in this paper, the algorithm stabilized within 100
iterations.

9 Results and Evaluation

In this section, we first describe the results of our scene database
construction effort. To investigate the effectiveness of our method,
we then synthesized several types of scenes under varying input
conditions. We also conducted an experiment in which people
provided subjective judgments on the plausibility of synthesized
scenes.

9.1 Scene Database

Scenes in our database are constructed using a simple scene mod-
eling interface. Unlike most modeling software, it does not allow
individual object modeling. Instead, users populate scenes by plac-
ing, rotating, and scaling objects drawn from a collection of 12490
Google 3D Warehouse models.

We distributed our scene modeling program and asked participants
in our database-building effort to model indoor scenes such as stud-
ies, kitchens, and living rooms. The majority of our participants
were colleagues, or their friends and family. In total our partici-
pants generated 130 scenes, containing 3461 model instances and
using 1723 distinct models. We provide this dataset as a resource to
the research community; it can be found on the project web page:
http://graphics.stanford.edu/projects/scenesynth.

9.2 Synthesis Results

Figure 1 shows scenes synthesized from an input set of four com-
puter desks using λoccur = λarrange = 0.5. The scenes are similar
in style to the original four examples without being repetitive. The

Input Basic categories Contextual categories

Figure 5: Comparing basic and contextual categories. We show an input scene and the synthesized results using basic and contextual
categories. On the bottom we show four of the relevant contextual categories generated by our clustering algorithm. Contextual categories
allow synthesis with a greater variety of plausible models.

synthesized scenes use a wide variety of models not found in the
examples by drawing from the scene database. By using contextual
categories and mixing information from a related set of scenes, our
algorithm can insert plausible models not found in the input exam-
ples. For instance, the left two generated scenes both contain an
alarm clock in a plausible location and orientation on the desk even
though an alarm clock was not present in any of the input scenes.

In Figure 5, we compare the results of synthesizing using basic and
contextual categories. In both cases we set λoccur and λarrange to
zero. When synthesizing using basic categories, our algorithm can
only introduce variety by replacing each object with another model
from the same basic category. Synthesizing using contextual cat-
egories can increase the variety of results by replacing objects in
one basic category with objects from related basic categories. For
example, using basic categories the soda can on the desk will only
be replaced with other soda cans. In contrast, using contextual cate-
gories we draw from a broader set of object types including bottles.

In Figure 6 we show how the λoccur term controls mixing in the oc-
currence model. The input is a single example with only a couple
of objects. When λoccur = 0 we can only replace objects with other
objects of the same category, resulting in equally simple scenes.
As we increase λoccur we incorporate more diversity from similar
scenes in the database. Relevant new object categories are inte-
grated in consistent arrangements with respect to the existing ob-
jects. At λoccur = 1, the only contribution of the objects in the
input scene is to determine the set of relevant scenes. In the case
of the two desk scenes, a difference of only two objects had a sig-
nificant impact on the type of environment that was synthesized.
Note that the scenes in the database are not categorized, nor was a
‘desired type of scene’ label provided with the input example.

Figure 7 demonstrates how the λarrange term can be used to control
mixing of the arrangement model. The single input scene uses a
desk with only one supporting surface. Without mixing, the synthe-
sized results do not use other valid supporting surfaces present on
the chosen desk models, leading to cluttering of some surfaces and
barrenness of others. By increasing the value of the λarrange term,
we leverage observations of model placements from the database to
appropriately arrange objects on all available supporting surfaces of
the parent model, even if similar models were not used in the user
provided examples.

9.3 Human Evaluation

To evaluate whether our system consistently generates plausible
scenes we ran a online judgment study on three types of scenes:
Gamer Desks, Study Desks, and Dining Tables. Our hypothesis is
that a human observer will consider a significant fraction of the
synthesized scenes to be as plausible as scenes created by hand.

For each of the three scene types, we created scenes under the fol-
lowing experimental conditions:

1. Manually Created (Manual): We manually created four
scenes; building each scene took approximately 15-20 min-
utes for an experienced user of our scene modeling tool.

2. Synthesized (Synth): Scenes generated by our system using a
mixed model, trained on the four Manual scenes plus relevant
scenes retrieved from the database. λoccur = λarrange = 0.25.
We generated 50 scenes in this condition.

We then rendered images of all of these scenes. Within a given
scene type, scenes were rendered against the same background and
using the same camera configuration.

Input Scene λoccur = 0 λoccur = 0.5 λoccur = 1

Figure 6: Effects of varying the λoccur term. Left: a manually created input scene. Right: results generated at three different values of λoccur.
Even a sparsely populated example can direct the algorithm to retrieve and incorporate relevant content from the database.

Input Scene λarrange = 0 λarrange = 0.5 λarrange = 1

Figure 7: Effects of varying the λarrange term. Left: a manually created input scene. Right: results generated at three different values of
λarrange. With λarrange = 0, the objects are only placed on the main desk surface, as in the desk from the input scene.

1 2 3 4 5

Dining T
ables ManualSynth

Gamer D
esks Manual

Synth

Office D
esks Manual

Synth

3.83
3.50

4.27
3.98
4.03

3.51
Figure 8: Results of an online judgment study in which people eval-
uated the plausibility of synthesized scenes (Synth) and manually
created scenes (Manual) for three scene types. Each row is a his-
togram for one scene type/condition pair; the area of each box cor-
responds to the percentage of responses with that rating. Average
ratings are plotted as vertical lines.

We recruited 30 participants via Amazon Mechanical Turk. Par-
ticipants were required to be US residents to mitigate cultural in-
fluences on familiarity with different scene types. Through a web
interface, each participant was shown 51 scene images: four from
the Manual condition for each scene type, and 13 drawn at random
from the Synth condition for each scene type. Participants were
shown images one at a time in randomized order. Participants were
asked to specify, on a 5-point Likert scale, the plausibility of the
scene (1 = “Completely random, implausible scene,” 3 = “Some-
what plausible scene,” 5 = “Very plausible scene”). Rating a large
set of more than 50 images helped participants calibrate their re-
sponses.

Figure 8 shows a summary of the ratings obtained through this ex-
periment. Manual inspection of the data revealed no evidence of
‘freeloading’ or misbehaving workers, so we did not filter the data
prior to anaylsis. Eliciting subjective responses from workers on
Mechanical Turk is an inherently noisy process, but as expected,
the responses for Manual scenes are concentrated toward the high
end of the rating scale. In addition, the distribution of responses for
Synth scenes closely matches the distribution for Manual scenes.
Manual scenes were rated higher, on average, than Synth scenes
for all scene types, and this difference is statistically significant
(Mann-Whitney U test, p < 0.05). However, the difference is a
small one: across all scene types, ratings for the top 80% of Synth
scenes are not statistically distinguishable from ratings for Manual
scenes. This result suggests that on average, at least 80% of syn-
thesized scenes are not distinguishable from hand-created scenes
by a casual observer. It also far exceeded our initial goal of having
one third of the synthesis results be of comparable plausibility to
manually-created scenes. The images used in this study, as well as
the data obtained, can be found in the supplemental materials.

10 Discussion and Future Work

In this paper, we present a method for synthesizing arrangements
of 3D objects from examples. We develop a probabilistic model for
scenes composed of 3D objects, and we describe how to learn it
from data. We introduce the concept of contextual categories and

present an algorithm for computing them from a database of scenes.
We also describe a procedure for learning our probabilistic model
from a mix of specific example scenes and relevant scenes retrieved
from the database. Using the above techniques, our system can syn-
thesize a variety of plausible new scenes, requiring few examples as
input from a user. Finally, we validate the quality of our synthesized
results with an evaluation using human participants.

Our algorithm has several limitations that suggest areas for future
work. First, scenes are often constructed with a particular style in
mind, such as “antique” or “modern,” and our algorithm does not
capture these properties. This can result in synthesized scenes that
might be functionally viable but stylistically objectionable. Second,
our hill-climbing layout algorithm cannot escape local optima, nor
can it add or remove objects from the scene to resolve overcrowd-
ing. A more sophisticated sampler, such as a transdimensional
MCMC method, could alleviate these problems [Yeh et al. 2012].
Third, since its underlying models are probabilistic, our method
cannot represent ‘hard constraints’ such as rigid grid layouts or ex-
act alignment relationships. Future work might allow the user to
edit model components and mark them rigid if needed, then syn-
thesize scenes using a combination of probabilistic sampling and a
constraint satisfaction approach such as the one in Xu et al. [2002].
Finally, we have only evaluated our method on small-scale scenes.
Moving forward, we would like to address example-based synthe-
sis of large-scale environments such as amusement parks or military
bases. One way to make synthesis of these environments tractable is
to represent them as a hierarchy of arrangements at different scales.

We introduced contextual categories and showed that they can add
object variety to synthesized scenes. This is only a first step in
exploring alternative categorization schemes for 3D objects. Our
contextual categories are still a flat, disjoint list of object groups.
In contrast, researchers in computer vision have shown that hier-
archical categories can improve performance on challenging tasks
such as content-based image retrieval [Deng et al. 2011]. Exploring
techniques for automatically discovering such categorizations from
collections of 3D models is an important direction for future work.

Embedding automatic scene synthesis technologies into interac-
tive modeling tools presents another opportunity for future work.
Users could manipulate higher-level scene primitives—such as
‘fully decorated kitchen table’—using synthesized content. The in-
terface could also suggest ‘auto-completions’ for the user’s work-
in-progress when he or she runs out of ideas. We believe that these
types of tools can fundamentally change how people model 3D en-
vironments.

Acknowledgments

Support for this research was provided by the Fannie and John Hertz
Foundation, a Stanford Graduate Fellowship, the Akiko Yamazaki
and Jerry Yang Engineering Fellowship Fund, the NSF (CCF-
0937139, CNS-0831374), Intel (ISTC-VC), Adobe, and Google.
We would also like to thank all the 3D Warehouse users who cre-
ated the models found in our scene database.

References

AKAIKE, H. 1973. Information theory and an extension of the
maximum likelihood principle. In Second International Sympo-
sium on Information Theory, vol. 1, 267–281.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA,
SIGGRAPH ’10, 104:1–104:10.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3D modeling. ACM Transactions on Graphics 30 (December).

DENG, J., BERG, A. C., AND FEI-FEI, L. 2011. Hierarchical se-
mantic indexing for large scale image retrieval. Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on
0, 785–792.

DIEZ, Y., AND SELLARÈS, J. A. 2007. Efficient colored point
set matching under noise. In Proceedings of the 2007 interna-
tional conference on Computational science and its applications
- Volume Part I, Springer-Verlag, Berlin, Heidelberg, ICCSA’07,
26–40.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Character-
izing structural relationships in scenes using graph kernels. In
ACM SIGGRAPH 2011 papers, 34:1–34:12.

HAYS, J., AND EFROS, A. A. 2007. Scene completion using
millions of photographs. ACM Transactions on Graphics (SIG-
GRAPH 2007) 26, 3.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Transactions on Graphics 31, 4.

KALVIN, A., AND TAYLOR, R. 1996. Superfaces: Polygonal mesh
simplification with bounded error. Computer Graphics and Ap-
plications, IEEE 16, 3, 64–77.

KAZHDAN, M. 2007. An approximate and efficient method for
optimal rotation alignment of 3d models. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 29, 7 (july), 1221
–1229.

KUHN, H. 1955. The hungarian method for the assignment prob-
lem. Naval research logistics quarterly 2, 1-2, 83–97.

LAWSON, A., LINDERMAN, M., LEONARD, M., STAUFFER, A.,
POKINES, B., AND CARLIN, M. 2009. Perturbation and pitch
normalization as enhancements to speaker recognition. In Acous-
tics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on, IEEE, 4533–4536.

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND
KOLTUN, V. 2011. Interactive furniture layout using interior de-
sign guidelines. In ACM SIGGRAPH 2011 papers, 87:1–87:10.

MURTAGH, F. 1984. Complexities of hierarchic clustering algo-
rithms: state of the art. Computational Statistics Quarterly 1, 2,
101–113.

SILVERMAN, B. 1986. Density estimation for statistics and data
analysis, vol. 26. Chapman & Hall/CRC.

STEINBACH, M., KARYPIS, G., AND KUMAR, V. 2000. A com-
parison of document clustering techniques. In KDD workshop
on text mining, vol. 400, 525–526.

TORSELLO, A., ALBARELLI, A., AND PELILLO, M. 2007.
Matching relational structures using the edge-association graph.
In Image Analysis and Processing, 2007. ICIAP 2007. 14th In-
ternational Conference on, 775 –780.

VARGA, T., AND BUNKE, H. 2003. Generation of synthetic train-
ing data for an hmm-based handwriting recognition system. In
Document Analysis and Recognition, 2003. Proceedings. Sev-
enth International Conference on, IEEE, 618–622.

WOLFSON, H., AND RIGOUTSOS, I. 1997. Geometric hashing: an
overview. Computational Science Engineering, IEEE 4, 4 (oct-
dec), 10 –21.

XU, K., STEWART, J., AND FIUME, E. 2002. Constraint-based au-
tomatic placement for scene composition. In Graphics Interface
2002, 25–34.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: Set evolution for inspiring 3d shape galleries. ACM
Transactions on Graphics 31, 4.

YEH, Y.-T., YANG, L., WATSON, M., GOODMAN, N. D., AND
HANRAHAN, P. 2012. Synthesizing open worlds with con-
straints using locally annealed reversible jump mcmc. ACM
Transactions on Graphics 31, 4.

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. J. 2011. Make it home: au-
tomatic optimization of furniture arrangement. In ACM SIG-
GRAPH 2011 papers, 86:1–86:12.

