
Image Melding: Combining Inconsistent Images using Patch-based Synthesis

Soheil Darabi1 Eli Shechtman2 Connelly Barnes2 Dan B Goldman2 Pradeep Sen1

1UNM Advanced Graphics Lab 2Adobe Systems

(c) (d) (e)

(f) (h) (i)

(k)

(c) (d) (e)(a) (b) (c) (d) (e)

(g) (h) (j)(i)

(f)

(a) (b) (c) (d) (e)

Figure 1: A collection of results generated by our method: (a-b) image completion; (c-e) object cloning with seamless blending of color and
texture; (f-j) image morphing of unrelated photos; (k) texture interpolation. Image credits: (a) PSD Graphics; (c) Aimen Ashur; (e) Alan Saunders; (f) Alireza
Javaheri; (j) Ean-louis Zimmermann.

Abstract

Current methods for combining two different images produce visi-
ble artifacts when the sources have very different textures and struc-
tures. We present a new method for synthesizing a transition region
between two source images, such that inconsistent color, texture,
and structural properties all change gradually from one source to
the other. We call this process image melding. Our method builds
upon a patch-based optimization foundation with three key gener-
alizations: First, we enrich the patch search space with additional
geometric and photometric transformations. Second, we integrate
image gradients into the patch representation and replace the usual
color averaging with a screened Poisson equation solver. And third,
we propose a new energy based on mixed L2/L0 norms for colors
and gradients that produces a gradual transition between sources
without sacrificing texture sharpness. Together, all three gener-
alizations enable patch-based solutions to a broad class of image
melding problems involving inconsistent sources: object cloning,
stitching challenging panoramas, hole filling from multiple pho-
tos, and image harmonization. In several cases, our unified method
outperforms previous state-of-the-art methods specifically designed
for those applications.

Keywords: patch-based synthesis, image completion, image
stitching, object cloning, texture interpolation, morphing

Links: DL PDF WEB

1 Introduction

The issue of blending or stitching image regions arises in a range
of image editing problems. It is well-known as a core issue in
constructing panoramas from image sequences [Szeliski and Shum
1997], and in cutting and pasting from a source image to a desti-
nation image [Burt and Adelson 1983]. The common problem in
these applications is inconsistencies between the sources we want
to blend. By “inconsistent”, we mean that the image contents can
have different orientations, scales, color palettes, or textures, mak-
ing the matching and combination processes difficult. Gradient-
domain methods [Pérez et al. 2003] have been introduced to han-
dle color inconstancy by smoothly interpolating the error inside the
blend region, but no existing method can handle other inconsisten-
cies. To hide the boundary regions, graph cut based approaches try
to find the best boundary between regions. These methods have
proven successful, but are ineffective when there is no such opti-
mum transition region or when the regions have different textures.

In this work, we introduce the process of image melding, which we
defined as synthesis of the transition region to smoothly transform
from one source to another. We chose patch-based methods as the
foundation of our algorithm due their proven success in synthesis of
both pure textures [Kwatra et al. 2005] and natural images [Wexler
et al. 2007]. Current algorithms in this family are well-suited for
synthesis using consistent input images (in applications like hole
filling, reshuffling and retargeting [Simakov et al. 2008]). How-
ever these algorithms fail when given inconsistent input images be-
cause their energy function minimizes local appearance differences
between output and input, typically measured using an Euclidean
distance of patch pixel colors. A seamless blend between those
regions requires synthesizing contents that may not be similar to
either source under this metric (e.g., see Figs. 2 and 3). This
leads to one of the key observations of our work: we can modify
the similarity metric using a transformation on the patches. We
compensate for both geometric and photometric transformations to
address structure and texture alignment as well as color and inten-
sity inconsistencies. An additional observation is that humans are
very sensitive to gradient inconsistencies. This same observation
motivated the gradient domain methods [Pérez et al. 2003], which
showed impressive image editing and cloning results by locally ma-

http://doi.acm.org/10.1145/10.1145/2185520.2185578
http://portal.acm.org/ft_gateway.cfm?id=1145/2185520.2185578&type=pdf
http://agl.unm.edu/melding/index.php

Figure 2: Using our method to meld natural images. Image credits:
Flickr user “Alaskan Dude” (left source); Ed Yourdon (right source).

nipulating gradients instead of pixels, and then integrating the color
field. This local adjustment of gradients leads to a globally smooth
transition of intensity and color - a property that is lacking in patch-
based methods. Therefore, a second contribution of our work is to
combine the capabilities of patch-based approaches and gradient-
domain methods into a single framework that solves more challeng-
ing problems than any of these approaches alone. Although adding
the gradient term is helpful for gradually adjusting the colors, it
does not ameliorate artifacts when blending structures and textures.
By combining L0 and L2 terms in an energy minimization frame-
work, our third contribution, we successfully demonstrate the first
system that can interpolate both pure textures (Fig. 3) and natural
images (Figs. 2 and 4) at the same time and with no manual inter-
vention.

Another contribution of this work is expanding patch-based synthe-
sis methods to a broader set of interesting problems. By our gen-
eralizations, we broaden the applications of patch-based methods
and demonstrate that our framework performs at the same level or
in some cases even better than the state-of-the-art methods specif-
ically designed for each sub-problem. Our framework is the first
patch-based algorithm to be successfully applied to problems such
as cloning (Fig. 4), multi-image hole-filling (Fig. 5), harmonization
(Fig. 10), and panorama stitching (Fig. 11). Conventional wisdom
held that patch-based methods would only work for self-similar
structures where one can draw patches from similar parts within the
same image. Our generalization of the basic patch-based frame-
work enables us to handle patches that are far less similar, and
therefore makes a connection between these multi-image applica-
tions and patch-based techniques. Therefore, we can reduce these
previously unrelated problems to a single generic optimization.

2 Previous Work

2.1 Patch-based image editing

Patch-based synthesis methods have become a popular tool for im-
age and video synthesis and analysis. Applications include texture
synthesis, image and video completion, retargeting, image reshuf-
fling, image stitching, new view synthesis, morphing, denoising and
more. We will next review some of these applications.

Texture synthesis and image completion– Efros and Leung
[1999] introduced a simple non-parametric texture synthesis
method that samples patches from a texture example and pastes

Figure 3: Texture interpolation results. Showing our method ap-
plied on a few examples from [Reuters et al. 2010]. No manual
feature map is used. See comparisons in the supplementary mate-
rial. Image credit: CGTextures.

them into the synthesized image. Later research modified the search
and sampling approaches for better structure preservation [Wei and
Levoy 2000]. The greedy fill-in order of these algorithms some-
times introduces inconsistencies when completing large holes with
complex structures. Wexler et al. [2007] formulated the comple-
tion problems as a global optimization, obtaining more globally-
consistent fills. Using an additional objective term capturing lo-
cal similarity of the source to the target [Simakov et al. 2008],
additional applications were demonstrated, such as image summa-
rization, stitching collages and image morphing [Shechtman et al.
2010]. These methods are effective when the sources have simi-
lar textures and colors, but otherwise produce a visible feathering
effect in the transition between different photos/frames.

Barnes et al. [2009] accelerated this family of techniques us-
ing PatchMatch, a fast randomized patch search algorithm. This
method has been extended to search over rotations and scales
for computer vision applications (Generalized PatchMatch [Barnes
et al. 2010]), as well as a search of the bias and gain per color
channel to find correspondence between different photos of shared
content [HaCohen et al. 2011]. The recent work by Mans-
field et al. [2011] attempted to use Generalized PatchMatch for
image completion. However expanding the transformation space
alone gives too much freedom to the algorithm, thus resulting in
convergence to a bad local minimum (we will get back to this ob-
servation later on). Their conclusion corroborates our observation
by showing poor results for natural images.

Several works extended the patch-based energy function to improve
robustness of image completion. Arias et al. [2011] include a gra-
dient term in the patch similarity and apply an L1 norm for gradi-
ents to handle regions with high-detail textures. Our method shares
some similar components, but as we show in Fig. 8, our method
combines several strategies such that each technique complements
the rest. In addition, our framework is more general and allows a
range of different applications beyond only completion. Distances
between patch color histograms were used by Bugeau et al. [2010]
in addition to theL2 norm on pixel colors to avoid blurriness, as his-
tograms are robust to geometric transformations. This slows down
the algorithm and we found it unnecessary in our method.

ShiftMap [Pritch et al. 2009] is a recent graph cut based image edit-
ing method that showed some impressive image completion, retar-
geting and reshuffling results but it can not be extended to general

(a) (b) (c) (d) (e)

Figure 4: Seamless image cloning. (a) source image; (b) target image; (c) blending region marked in magenta; (d) Photomontage result
[Agarwala et al. 2004], and (e) our result. The texture is blended better by our method and we have less color “bleeding” artifacts (such as
in (d) for the squirrel). Image credits: Alyson Hurt (first row (b)); Mark Moschell (second row (a)).

transformations of the source data.

2.2 Image blending and compositing

The seminal image stitching work by Burt and Adelson [1983] in-
troduced the application of combining images by a pyramidal image
decomposition, merging its levels and collapsing back to obtain a
blended result. Sunkavalli et al. [2010] used the same technique
and showed impressive results of transferring the reference coarse
structure and blending it nicely with the surrounding colors, as well
as rendering similar noise patterns to the target image. However
their texture rendering is limited to matching statistics of only the
finest textural frequencies. Our method shows similar or better re-
sults in typical examples but can handle more challenging textures
and structures all the way to “pure” texture interpolation.

In 2003, graph cuts were introduced to graphics by Kwa-
tra et al. [2003] as a tool to seamlessly combine textures and stitch
images. The same year Pérez et al. [2003] showed a gradient-
domain color adjustment method to handle color inconsistencies
for image compositing. Agarwala et al. [2004] combined gradient
domain blending with graph cuts to seamlessly combine different
sources together at interactive rates for a variety of compositing ap-
plications. This framework has been successfully used for stitching
unrelated photos with roughly similar overlapping regions [Kaneva
et al. 2010]. The main limitation of these methods is their inabil-
ity to deform the inputs when combining images with large view-
point, textural or structural differences. Small misalignments can
be addressed using a more complex warping [Lin et al. 2011], but
these solutions are not general enough for larger misalignments and
texture differences. Other methods combine different images with
simple feathering of the boundaries [Rother et al. 2006] or using a
large dataset of web photos [Hays and Efros 2007].

3 Algorithm

Although our melding framework is designed for multi-source ap-
plications, for simplicity we start from single source image synthe-
sis in Sec. 3.1 and then in Sec. 3.2, we present our algorithm for
melding application in the context of multi-image synthesis.

3.1 Single source patch-based synthesis

Single source image synthesis is the simplest application of our
framework. For the special case of image completion we are given
a user-defined mask dividing the image into source region S and
target region T (the region of all patches overlapping the “hole”),
and the objective is to replace the contents of region T using con-
tents from region S. In this family of applications the regions of the
input image may be inconsistent due to spatially varying illumina-
tion or geometric transformations as can be seen in Fig. 6. We pose
this task as a patch-based optimization problem with the following
energy function:

E(T, S) =
∑
q⊂T

min
p⊂S

(D(Q,P) + λD(∇Q,∇P)), (1)

where Q = N (q) is a w × w patch with target pixel q at its up-
per left corner, and P = f(N (p)) is a w × w patch that is a result
of a geometric and photometric transformation f applied on a small
neighborhoodN around source pixel p. All patches have five chan-
nels: three color channels in L*a*b* color space and two gradient
channels of the luminance at each pixel (L, a, b,∇xL and ∇yL).
However, to simplify our notation, we will heretofore use P (or Q)
to denote only the three color channels of the patch, and ∇P (or
∇Q) to denote the two luminance gradient channels. The transfor-
mations f encompass translation, rotation, non-uniform scale and
reflection, as well as gain and bias in each channel. These transfor-
mations are limited to predefined ranges that can vary depending
on the task or on prior information (e.g., small expected geometric
variations). D is the sum of squared distances (SSD) over all chan-
nels, and the gradient dimensions are weighted by λ w.r.t. the color
channels. This energy function defines the optimal fill in which ev-
ery local neighborhood appears most similar to some local neigh-
borhood within the source, under a restricted set of transformations.

This energy function resembles the one from Wexler et al. [2007]
with two main differences:

1. We search over local geometric and appearance transforma-
tions of the patches in the source, as opposed to only shifted
patches. This extension is especially important in the case

of multiple sources, which contain much larger variations in
geometry and color.

2. We include patch gradients in our distance metric in addition
to colors. This improves robustness to large scale illumination
and structure variations. Note that by adding gradients to our
representation we are not only boosting the high frequencies
of local descriptors, as seen in other editing methods [Agar-
wala et al. 2004; Pritch et al. 2009], but we are also affecting
the step that updates the colors, as described next.

Wexler et al. [2007] proposed an iterative algorithm to optimize
such an objective function by alternating in every scale between two
steps - patch search and color voting, where each step is guaranteed
to decrease the energy function. In the search step, similar (nearest
neighbor) input patches are retrieved for all overlapping patches in
the output. These patches are then blended together in the voting
step by averaging the color “votes” that each such patch casts on
every output pixel, resulting in a new output image. The iterations
continue until the colors converge, and are repeated across scales
in a coarse-to-fine fashion. Our algorithm is similar, but requires
several important modifications to the search and voting steps to
guarantee that each reduces our energy function (Eq. 1).

Search– To find the closest patch P in Eq. 1 we used the Gener-
alized PatchMatch algorithm [Barnes et al. 2010] which efficiently
finds dense approximate nearest neighbor source patches for all tar-
get image patches, with a search space of three degrees of freedom:
translations, rotations and scales. We extend the search space fur-
ther to handle reflections and non-uniform scale, as these transfor-
mations occur often in natural images, and are crucial in our appli-
cations (see Fig. 6). In order to obtain invariance to small illumina-
tion, exposure, and color changes, we follow HaCohen et al. [2011]
and apply gain g and bias b adjustments in each channel of a
source patch to best match the target patch (in the L2 sense). We
limit these adjustments within some reasonable predefined ranges.
These are computed as follows, where c is the color channel:
g(P c) = min {max {σ(Qc)/σ(P c), gmin}, gmax}, b(P c) =
min {max {µ(Qc)− g(P c)µ(P c), bmin}, bmax}, where c ∈
L, a, b, σ() and µ() are the standard deviation and mean of the in-
put patch at each channel c, and [gmin, gmax] and [bmin, bmax] are
the gain and bias ranges. These gain and bias are used to adjust the
colors of the patch P c: P c ← g(P c)P c + b(P c).

Voting– Eq. 1 is quadratic in all patch terms, where every target
pixel participates in w×w terms – one for each overlapping patch.
Therefore, the optimal target image satisfies:

T = argmin
I
{D(I, T) + λD(∇I,∇T)}, (2)

where T and∇T are images with the same size as I and their values
at pixel (i, j) correspond to:

T (i, j) =
∑

k=0...w−1
l=0...w−1

NN(Qi−k,j−l)(k, l)

w2
,

∇T (i, j) =
∑

k=0...w−1
l=0...w−1

∇NN(Qi−k,j−l)(k, l)

w2
, (3)

Here NN(Qi,j) is the nearest neighbor patch in source S to the
target patch Qi,j (assuming that the top left of the patch is its co-
ordinate), and NN(Qi,j)(k, l) selects the pixel (k, l) within that
patch (after transformation). That is, T collects the average col-
ors of the overlapping transformed patches. The gradient channel
∇T is assigned in the same manner. For the complete proof please
see Sec. B. Interestingly, we find that the the equation Eq. 2 is the
discrete screened Poisson equation [Bhat et al. 2008; Bhat et al.

(a) (b) (c) (d) (e)

Figure 5: Multi-image completion comparisons. (a) a hole is
marked (magenta); (b) additional source; (c) filling the hole us-
ing Wexler et al. [2007] with both sources given; (d) filling by a
manual homography alignment of the region around the hole and
Poisson blending; and (e) our method.

Algorithm 1 IterationsHoleFilling()

Input: Input image S and “hole” mask of pixels to be filled
Output: Final image T

1: Downsample S and “hole” to coarsest scale d0
2: Initialize T
3: for scale d from d0 → 1 with step size ds do
4: for iteration e = 1→ n do
5: T ,∇T ← ReconstructImage(S, T)
6: T ← ScreenedPoisson(T ,∇T)
7: end for
8: end for

2010] applied to the color and gradient channels computed using
the original average-per-pixel “voting” method of Wexler et al..
For an efficient solution of Eq. 2, we extend the fast method of
Farbman et al. [2011] to the screened Poisson equation. Please see
Sec. 4 for details.

We continue to alternate the search and voting steps until conver-
gence – or, in practice, stopping the iterations after 10-30 iterations,
more at coarse scales and less at fine scales. The process is repeated
at multiple scales in a coarse-to-fine manner, using a Gaussian pyra-
mid and initializing with colors interpolated from the hole bound-
aries with inverse distance weighting [Wexler et al. 2007]. Note
that, as in previous works [Wexler et al. 2007; Simakov et al. 2008],
each step in our algorithm is guaranteed not to increase the objec-
tive (Eq. 1). Although this coordinate descent method finds only
local minima to the overall objective, the minima we obtain are of-
ten visually plausible. We include pseudo-code of our algorithm in
Alg. 1.

3.2 Multi-source spatial melding

The simplest way to obtain a smooth transition between two regions
is by using alpha blending: T = α1S1 + α2S2, where α1 = α,
α2 = 1 − α and α changes linearly from 0 to 1. However this
approach can easily produce “ghosting” and feathering artifacts due
to lack of alignment of high-frequency edges and structure between
the sources. Thus, Ruiters et al. [2010] applied a non-linear warp
to the patches before alpha blending them (aided by a manually
constructed external feature map) for texture interpolation.

Our method combines the benefits of gradient domain blending and
texture interpolation in one unified patch-based optimization frame-
work, building upon the objective presented in Sec. 3.1. In order to
obtain a spatially gradual blending between sources S1 and S2, the
optimal result T in the transition area should minimize the follow-

Algorithm 2 ReconstructImage()

Input: source image S and target image T we want to reconstruct
Output: reconstructed image T

1: Initialize T = 0 (of the size of T with 5 channels)
2: Generate full-resolution scale space pyramid Spyr for image S

3: for all pixels q ⊂ T with coordinate i, j do
4: Create target patch Q with coordinates i′ : i, . . . , i+w− 1,

j′ : j, . . . , j + w − 1
5: P ←GeneralizedPatchMatch(Spyr, Q)
6: Calculate vertical and horizontal gradients (∇x,∇y) of P
7: for all the coordinates i′ and j′ do
8: for channel c = {r, g, b,∇x,∇y} do
9: T (i′, j′, c)← T (i′,j′,c)+P (i′−i,j′−j,c)

w2

10: end for
11: end for
12: end for

ing objective function:

Eblend(T, {S1, S2}) = α1E(T, S1) + α2E(T, S2), (4)

whereE is the same as the function in Eq. 1. This objective requires
the patches in T to be similar to both S1 and S2, where the relative
contribution of each source transitions gradually from one source
to another as in alpha blending. The minimization process for this
objective function is similar to the one for single source synthesis
(Sec. 3.1) but with the difference that the search and vote have to
be done separately using each of the sources. Next, we blend the
colors and gradients from the voted image of each source using the
given α and finally we update the colors based on the gradient by
solving the screened Poisson equation. See Alg. 3 for more details.

This algorithm combines the benefits of alpha blending and gradi-
ent domain methods in three ways. First, edges and structures are
aligned before blending by a search across geometric variations,
and warping the patches accordingly during voting. Second, wide
photometric and appearance variations can be matched by the use
of a gain and bias per channel as well as matching of gradients.
Third, integration of colors and gradients using the screened Pois-
son equation allows local patch-based edits to propagate globally,
leading to smooth and gradual transition of color from one source
to another, just as in traditional gradient domain methods.

One weakness of the above algorithm is that a simple average of
gradients tends to wash out small details when the features are
not fully aligned by nearest-neighbor matching. This is a com-
mon effect for small textural properties such as non-structural noise.
Pérez et al. [2003] made a similar observation about averaging gra-
dients for combining different sources and used a maximum-norm
per pixel operator instead. Others [Tappen et al. 2005; Xu et al.
2011] observed that since gradients are sparse in natural images,
one should use robust norms (Lp with p = 1 or lower) for optimiza-
tion terms involving image gradients. We handle this problem in a
similar way by replacing the weighted L2 norm with an L0 norm.
We use a greedy algorithm to take a downhill step in the L0 norm:
this leads to the use of a weighted maximum instead of weighted
averaging in the blending step. See more details in Appendix A.
The effects of this operator are demonstrated in Fig. 8.

3.3 Multi-source temporal melding

In the previous section we showed how we could spatially inter-
polate the transition regions between two different image sources.
Shechtman et al. [2010] used a similar patch-based optimization

Algorithm 3 IterationsBlending()

1: for scale d from d0 → 1 with step size ds do
2: for iteration e = 0→ n do
3: T 1 ← ReconstructImage(T, S1)

4: T 2 ← ReconstructImage(T, S2)

5: T = α1T 1 + α2T 2

6: if α1|∇T 1| > α2|∇T 2| then
7: ∇T ← ∇T 1

8: else
9: ∇T ← ∇T 2

10: end if
11: T ← ScreenedPoisson(T ,∇T)
12: end for
13: end for

Algorithm 4 IterationsMorphing()

1: for scale d from d0 → 1 with step size ds do
2: for global sweep g = 0→ r do
3: for frame k = [1, . . . ,K,K − 1, . . . , 1] do
4: for iteration e = 0→ n do
5: T 1 ← ReconstructImBDS(T k, S1)

6: T 2 ← ReconstructImBDS(T k, S2)

7: T 3 ← ReconstructImBDS(T k, T k−1)

8: T 4 ← ReconstructImBDS(T k, T k+1)

9: T ←
∑
i=1...4 αiT i

10: imax ← argmaxi=1...4{αi‖∇T i‖}
11: ∇T ← ∇T imax

12: T k ← ScreenedPoisson(T ,∇T)
13: end for
14: end for
15: end for
16: end for

method, to temporally interpolate two different images. Following
their objective, we pose the morphing task as an optimization for
all frames T 1...K given the two sources S1 and S2:

Emorph(T
1...K , {S1, S2}) =

K∑
k=1

{α1Ebds(T
k, S1)+ (5)

+ α2Ebds(T
k, S2) + α3Ebds(T

k, T k−1) + α4Ebds(T
k, T k+1)},

where T 0 = S1 and TK+1 = S2 and α3 = α4 indicate the tempo-
ral coherency weight w.r.t. the fidelity of output to the sources and
in all of our experiments we set it to be α3 = α4 = 0.5. This objec-
tive is similar to the source blending objective from Eq. 4, with the
following differences: first, in addition to an alpha-weighted simi-
larity to the two sources, it requires similarity of each frame to its
neighboring frames T k−1 and T k+1; second, it uses bidirectional
similarity (BDS) [Simakov et al. 2008] as the basic patch-based
similarity measure between images. BDS combines the patch-
based term from Eq. 1 with another term that sums distances for
all patches in the source S to their nearest neighbor in the target
T : Ebds(S, T) = E(S, T) + E(T, S). The latter term helps en-
sure that the content from the source will appear in the target and
avoids converging towards excessively smooth and repetitive solu-
tions. This objective is optimized using a similar iterative algorithm
but because synthesis of each frame depends on its neighbors, we
sweep across them r times to propagate all the changes throughout
the frames (see Alg. 4).

(a) (b) (c) (d) (e)

Figure 6: Image completion comparison. Left to right (a) original image; (b) a hole is marked (magenta); (c) a result of Wexler et al. [2007];
(d) Shift-Map [Pritch et al. 2009], and (e) ours. Image credits: Franz Jachim (first row (a)); Flickr user “Kecko” (second row (a)).

Algorithm 5 ReconstructImBDS()

Input: source image S and initial target image T
Output: reconstructed target image T

1: T forward ← ReconstructImage(T, S)
2: T backward ← ReconstructImage(S, T)
3: T ← T forward+T backward

2

4 Implementation Details

Search and vote– We use a high order (Lanczos3) sampling filter
and a densely sampled scale-space (10 filtered scales at the same
resolution of the original image, with no subsampling), for higher
quality filtering than previous patch-based method that searched
over rotations and scales for analysis applications [Barnes et al.
2010; HaCohen et al. 2011]. Although it costs higher memory,
this allows us to use simple nearest-neighbor sampling of patches
up to the finest scale, for faster performance while maintaining high
quality. We use two bilinear interpolations at the last iterations of
the finest scale for best quality. We also use the precalculated gain
and bias of each patch for early rejection of source patches whose
gain or bias deviates more than ×1.1 that of the target patch, in
addition to the early rejection based on the distance [Barnes et al.
2009]. Also, over the course of the iterations most pixel updates
occur at boundaries of coherent regions, so we limit the search to
only those boundaries at finer resolutions.

Screened Poisson solver– In our method we solve the screened
Poisson Eq. 2 in each iteration of our method. Bhat et al. [2008]
suggested a Fourier-based solver for the same problem. However
it is still a significant bottleneck when applied many times on large
images. Farbman et al. [2011] introduced a new efficient way to

solve linear translation-invariant (LTI) problems with a pyramidal
convolution approach. These include a family of problems like the
Poisson equation and Shepard’s interpolation, commonly used for
gradient domain stitching and cloning. This reduces the O(n2)
complexity to an extremely fast O(n) approximation algorithm.
Although not derived in their work, the screened Poisson equation’s
Green function is a linear combination of the Poisson function and
a delta function associated with the color term, and thus belongs to
the family covered by their method. We learned the specific 5 × 5
and 3 × 3 kernels for the screened Poisson equation and applied
these fast pyramidal convolutions as our solver, taking only a small
portion of the overall runtime.

Parameters– In patch-based methods the patch size is a crucial
parameter. Large patches capture more structure and lead to bet-
ter synthesis of structures, if good matches are found. However
if such matches are not found the result can easily converges to a
blurry solution. Therefore previous methods [Wexler et al. 2007;
Simakov et al. 2008; Barnes et al. 2009] used smaller patches (e.g.,
5 × 5 or 7 × 7) that generally lead to sharper and more flexible
synthesis (linear structures can slightly bend to better connect) and
the expense structural changes. The larger geometric and appear-
ance search space in our method allows us to use larger 10 × 10
patches while well preserving structures, having flexibility when
needed and obtaining sharp results. Unless mentioned otherwise,
we set the search range to be [−π

2
, π
2
] for rotation, [0.9, 1.3] for

uniform scale, and [0.9, 1.1] for relative scale (horizontal/vertical).
The range of the bias for all the three channels is [−10, 10] and for
gain is [0.9, 1.3]. The algorithm is fairly robust to variation of these
ranges. Additionally, because these parameters are semantically
meaningful, e.g., rotation, scale, brightness, and contrast adjust-
ment (gain and bias), it is easy to adjust them in a meaningful way
for a particular task. When we have no blending (hole filling, warp-

(a) (b) (c)

Figure 7: Comparison against the method of Mans-
field et al. [2011]: (a) input hole (magenta); (b) result of
our method using Generalized PatchMatch only (simulates [Mans-
field et al. 2011]), and (c) our full method. Note that without
the gradient term the method does not connect the horizon and
converges to a blurry local minimum. Image credit: Kuster & Wildhaber
Photography.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Analysis of our blending method by eliminating com-
ponents. (a) using only color patches (no gradients); (b) using L2

norm for gradients instead ofL0 when combining sources (Eq. (4));
(c) no blending - use the best patch from either of the sources
(Eq. (1)); (d) no gain and bias correction per channel; (e) no rota-
tion and scale search, and (f) full method.

ing) we chose the gradient weight λ = 0.2 and otherwise λ = 0.5.
The reason is that effective blending between different textures is
more easily accomplished by blending their gradients than colors.
For blending applications, such as cloning and morphing, we lim-
ited the search range for the offset of the patches to be 0.1 to 0.2
of the image size to avoid irrelevant patches from distant regions.
We use 30 iterations at lower resolution and gradually reduce the
iterations to 2 at the finer resolution. For morphing we start from 6
global sweeps over all frames at the coarsest level and reduce it to
1 at the finest resolution.

5 Results

Our Matlab/C++ implementation was designed for versatility and
quality rather than performance. The experiments were done on an
Intel dual quad-core Xeon X5570 3.06GHz machine. Our method
takes about 58 seconds to complete a hole of 0.25 megapixels in a
1340×2048 image. If we use only color patches and do not use any
transformations (to duplicate the algorithm of Barnes et al. [2009]),
the run time is 26 sec., vs. 4 sec. using Photoshop’s Content-Aware
Fill feature that is based on the same algorithm [Adobe 2010]. This
suggests that a more optimized implementation could be signifi-
cantly faster. The bottleneck of our method is the search, which
is linear in the number of pixels to be synthesized [Barnes et al.
2009]. As with previous patch-based optimization methods using
PatchMatch, intermediate results at coarse scales are obtained at in-
teractive rates, allowing the user to quickly assess the final quality,
change parameters and add constraints if needed. Our most compu-
tationally demanding application is image morphing, for which we
have to synthesize a sequence of frames. This process required a
few tens of minutes for a sequence of size 635× 456× 20 frames,
similar to the runtimes reported by Shechtman et al. [2010].

We have applied our method to a wide variety of image editing

(a) (b) (c)

(d) (e) (f)

Figure 9: Texture preserving warping. Top (left to right): (a)
source; (b) result using Fang and Hart [2007]; (c) our result. Bot-
tom: (d) another source; (e) simple warp, and (f) our result. Image
credit: (d) Holger Zscheyge.

applications, and the results that follow illustrate that it performs as
well or better than the previous state-of-the-art methods for each.

Image completion– Fig. 6 shows that our method can success-
fully fill large holes using a richer search space. It can exploit
rotational and reflection symmetry, complete edges and textures
using examples from different orientations, scales and colors. In
Fig. 7 we compare our method against hole-filling algorithm us-
ing only Generalized PatchMatch which is similar to approach of
Mansfield et al. [2011] and as can be seen the algorithm converges
to blurry local minimum when no gradient term is included. Our
method also allows additional relevant photos to be used as source
content for completion. Most previous methods could not use this
additional data effectively because the shared content appears of-
ten at different view points, scale, illumination, exposure, white
balance and other camera parameters. Whyte et al. [2009] han-
dled the special case of rigid scenes, where a homography trans-
form can bring the corresponding content into good alignment. But
in general, aligning photos under these variations is a challenging
problem in itself [HaCohen et al. 2011]. Fig. 5 shows a few ex-
amples of our results vs. [Wexler et al. 2007]. The figure also
illustrates the results that might be obtained using the method of
Whyte et al. [2009], in this case using a manually adjusted homog-
raphy to align the sources, followed by gradient domain blending.
Even if the correspondence around the hole can be found reliably, a
simple blended paste of the region can often fail as shown in Fig. 5.

We have also extended our hole filling framework to the problem of
texture-preserving warping [Fang and Hart 2007]. In this task, the
user defines a geometric warp of an object within the image, and
we use our method with the constraint that the original small-scale
textural properties of the object are preserved to avoid stretching.
Instead of using the warping field to render the pixel colors directly,
we use it to define a constraint for each pixel in the target image
(to be synthesized) a constrained set of admissible transformations
from in the source image (the unwarped input). The window size
increases linearly with the distance to the object boundaries, and
constrain all patch scales to exactly one in order to avoid stretching
of the texture. Fig. 9 shows a comparison to Fang and Hart [2007]
on one of their examples.

Texture interpolation– We found texture interpolation to be the
most demanding application of source stitching. In this case, both

color and texture should gradually change from one source to an-
other. Ruiters et al. [2010] proposed a patch-based synthesis algo-
rithm that does not use an external dataset, but it requires a manu-
ally created feature map that marks the “cracks” between the basic
texture units. This requirement limits the types of textures appli-
cable to this method. In contrast, our method is fully automatic.
Fig. 3 shows results of our method applied on a few examples from
Ruiters et al. [2010] and direct comparisons can be found in the
supplementary material. Both methods give plausible interpolation
results but their method takes a few hours to compute vs. tens of
seconds for our method. Moreover, our method can be applied on
natural images in addition to homogenous textures (Fig. 2).

Image cloning and stitching– When cloning or stitching images
with backgrounds that contain high contrast textures or structures
that do not align, existing methods produce color bleeding artifacts
and obvious boundary artifacts (e.g., as can be seen in the right
side of the hole touching the tree texture in the squirrel example,
Fig. 4(c) third row). In Fig. 4, we compare our method with the
Photomontage method by Agarwala et al. [2004] on a few cases
where the textures are inconsistent. Problems arise in the presence
of parallax, occlusions and moving objects. Our method resynthe-
sizes the overlap region with some large margins, and can cope with
very large changes as demonstrated in Fig. 11.

Image harmonization– Image harmonization [Sunkavalli et al.
2010] cleverly combines image pyramid levels from the sources
using smooth histogram and noise matching in order to transfers
some textural properties in addition to color and intensity. In this
application we want to extract structure from one image and de-
tail from another, so we extended our cloning method to hold the
structure image constant, and give it a large constant importance
(α(i, j) = 0.9) in our blending formula. In this manner, the struc-
ture will come from that image except where it is missing high fre-
quency details. Thanks to our L0 optimization, those small-scale
details are replicated from the other image. In Fig. 10 we show two
comparisons against this method: In the first row, a result of apply-
ing our method on one of their failure cases, preserving coarse scale
orientation properties of the sand texture, while avoiding contami-
nation of the hydrant with the sand texture.

(a)

(b)

(c) (d)

Figure 11: Panorama stitching. Our method synthesizes in (c) a
transition area between the two sources (a) and (b) after roughly
aligning them with a homography. (d) shows a comparison to
Photoshop’s Photomerge tool, based on a homography alignment,
graph cut and gradient blending. Typical stitching artifacts are vis-
ible in (d) due to the large view point change, whereas our method
removes some redundancy (a column of windows in two buildings,
and small objects) to put in the important content in both source.

Morphing– In Fig. 12 we demonstrate blending between two im-
ages across time, via three intermediate frames of our automatic
morphing output. Our method produces better transitions than re-
generative morphing [Shechtman et al. 2010] on some challenging
examples, primarily because of the large space of deformations.

6 Conclusions and Limitations

We have shown a general patch-based synthesis framework that
handles inconsistencies within and across image sources. It com-
bines principles from patch-based synthesis with gradient domain
blending and texture interpolation into a powerful unified synthe-
sis engine. We originally designed the method to handle multiple
sources with substantial inconsistencies for challenging stitching,
cloning and morphing problems, but components of it are also use-
ful for single source tasks such as image completion and warping.
It has high potential to be helpful for other applications that used
patch-based synthesis in the past: image retargeting, reshuffling,
image analogies, texture synthesis and analogous space-time video
manipulation applications.

Our method is not without limitations: in some examples too many
degrees of freedom might lead to unwanted distortions (such as line
bending). These are visible in Fig. 11 (distortions in buildings).
Barnes et al. [2009] demonstrated that line (and other model based)
constraints can provide an intuitive tool for the user to protect im-
portant content, and our method can benefit from such constraints
in the same way. A limitation of our cloning solution can be seen in
Fig. 4 - a large background margin around the object may be needed
for a pleasing texture interpolation between very different textures.
Of course some textures are simply too disparate to be stitched in
a seamless way (e.g., a clear sky would not blend with any coarse
texture). Finally, the additional quality obtained by our modifica-
tions have sacrificed much of the interactive performance shown in
Barnes et al. [2009]. However, because the bulk of the additional
computation results from filtering and interpolation, we believe our
method could be well-suited to GPU implementation.

Appendix

A Texture Interpolation

During synthesis, we have two voted images T 1 and T 2 containing
color and gradients from the corresponding sources. We need to
combine these together to get a final color and gradient, prior to
Poisson integration (see Alg. 3). The texture interpolation energy is
defined as:

E =Ecolor + Egradient

=

2∑
i=1

αi‖T − T i‖2 + αi‖∇T i‖‖∇T −∇T i‖0.
(6)

Here T is the unknown target pixel color, T i is the voted pixel
color, αi is the interpolation parameter, and gradients are indicated
using ∇. This energy has an L0 term and makes the optimization
problem NP-complete [Candes et al. 2005]. In the Compressive
Sensing community it has been shown that in some specific condi-
tions the L0 problem can be reduced to L1, however common L1

solvers are too slow for large problems like ours. Moreover, many
recent greedy solvers have been shown to be able to efficiently ap-
proximate the solution. Our solution for solving Eq. 6 is a greedy
approximation and resembles [Tropp and Gilbert 2007]. The solver
iteratively makes a greedy choice between the source to be used for
each pixel and then according to this choice, the method uses L2

least square solver (screened Poisson solver) to evaluate the final
values. Our fast greedy solution converges to an acceptable local
minimum and in more than 90% of the iterations it decreases the
energy in Eq. 6 compared to its value in previous iteration. Explor-
ing more sophisticated solvers is left for future research.

(a) (b) (c) (d) (e)

Figure 10: Comparison between our method and image harmonization [Sunkavalli et al. 2010]. (a,b) Two examples with two sources;(c) Pois-
son blending, (d) Harmonization result taken from using Sunkavalli et al. [2010], and (e) our result. In the hydrant example our result
preserves better the orientation of the sand texture, and does not contaminate the hydrant. In the Mona Lisa example, our algorithm is able
to succesfully transfer the shading from the Da Vinci original to the new face in a controllable manner, producing a result that looks more
like the original Mona Lisa than previous work. Image credits: Bob Fornal (first row (a)); Luis Argerich (first row (b)).

Figure 12: Morphing results. Results of applying our method to morphing different images (another result appears in Fig. 1). Our method
handles sources with larger geometric and appearance differences than Regenerative Morphing [Shechtman et al. 2010]. See comparisons
in supplementary material. Note that our method automatically found corresponding features through the morph between two images that
are captured under different viewpoint and illumination. Image credits: Emma Danielsson (left source); Mark Freeman (right source).

We specifically take a greedy downhill step in Eq. 6 by minimizing
separately the colors and gradient energies. Minimizing separately
the target color gives a simple linear interpolation for color: T =∑2
i=1 αiT i. The optimal gradient∇T can be found by noting that

when Egradient is at a minimum, at least one of the zero norms must
be zero. So∇T is simply one of the gradients∇T i, specifically the
gradient ∇T i for which αi‖∇T i‖ is maximal. That is, we choose
the source gradient which has maximum magnitude after weighting
by αi. This gives rise to the conditional in lines 6-10 of Alg. 3.

B Voting and the screened Poisson Equation

We demonstrate that minimizing the patch energy of Eq. 1 is equiv-
alent to solving the discrete screened Poisson equation [Bhat et al.
2008] using the mean gradient and color of the overlapping patches.
Recall that Eq. 1 is optimized by an alternating optimization, where
we first find nearest neighbor patches that decrease the energy, and
then “vote” using the proposed overlapping patches to further de-
crease the energy. Thus, we want to find image T minimizing:

E(T, S) =
∑
q⊂T

Q=N (q)

D(Q,NN(Q)) + λD(∇Q,∇NN(Q)), (7)

where Q are overlapping patches in the output target image T ,
NN(Q) is the nearest neighbor source patch to Q, and D is sum-
squared difference as before. Now we use an identity of quadratic
forms:

1

n

n∑
i=1

(a− bi)2 =

(
a− 1

n

n∑
i=1

bi

)2

+ C(b1, . . . , bn). (8)

Here C is a constant function of bi variables. This states that a
sum of quadratic forms in the unknown target color a is equivalent
to a single quadratic form. The identity can be shown directly by
expanding the quadratics, and also applies if any linear operator
∇ is applied to a and bi. Applying Eq. 8 to Eq. 7 allows us to
replace the sum of quadratics for overlapping patches with a single
quadratic per target pixel color and gradient, that is, up to constant
factors, Eq. 7 is equivalent to:

Ẽ =
∑

(T − T)2 + λ‖∇T −∇T‖2. (9)

Here T and ∇T are the averaged overlapping colors and gradients
(Eq. 3). This energy is the discrete screened Poisson equation [Bhat
et al. 2008].

Acknowledgements

We thank the Flickr users who placed their work under the Cre-
ative Commons License. We also thank the authors of [Pritch et al.
2009] and [Agarwala et al. 2004] for sharing their executables of
corresponding papers, and Zeev Farbman for the valuable sugges-
tions regarding adapting his method [Farbman et al. 2011] to our
problem. This work was supported in part by Adobe and a National
Science Foundation CAREER award IIS-0845396.

References

ADOBE, 2010. Photoshop cs5 content-aware fill.
http://www.adobe.com/technology/projects/
content-aware-fill.html.

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. In ACM SIG-
GRAPH, vol. 23, 294–302.

ARIAS, P., FACCIOLO, G., CASELLES, V., AND SAPIRO, G.
2011. A variational framework for exemplar-based image in-
painting. IJCV 93 (July), 319–347.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. In ACM SIGGRAPH,
vol. 28, 24:1–24:11.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The Generalized PatchMatch correspondence
algorithm. In ECCV.

BHAT, P., CURLESS, B., COHEN, M., AND ZITNICK, L. 2008.
Fourier analysis of the 2D screened Poisson equation for gradient
domain problems. In ECCV.

BHAT, P., ZITNICK, C. L., COHEN, M., AND CURLESS, B. 2010.
Gradientshop: A gradient-domain optimization framework for
image and video filtering. ACM Trans. Graphics 29 (April),
10:1–10:14.

BUGEAU, A., BERTALMÍO, M., CASELLES, V., AND SAPIRO, G.
2010. A comprehensive framework for image inpainting. IEEE
Trans. on Image Processing 19, 10 (oct.), 2634 –2645.

BURT, P. J., AND ADELSON, E. H. 1983. A multiresolution spline
with application to image mosaics. ACM Trans. Graphics 2 (Oc-
tober), 217–236.

CANDES, E., RUDELSON, M., TAO, T., AND VERSHYNIN, R.
2005. Error correction via linear programming. In IEEE Sympo-
sium on Foundations of Computer Science, 668 –681.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. IEEE Computer Society, Los Alami-
tos, CA, USA.

FANG, H., AND HART, J. C. 2007. Detail preserving shape defor-
mation in image editing. In ACM SIGGRAPH, vol. 26, 1–5.

FARBMAN, Z., FATTAL, R., AND LISCHINSKI, D. 2011. Convolu-
tion pyramids. In ACM SIGGRAPH Asia, vol. 30, 175:1–175:8.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LISCHINSKI, D. 2011. Non-rigid dense correspondence with ap-
plications for image enhancement. In ACM SIGGRAPH, vol. 30,
70:1–70:10.

HAYS, J., AND EFROS, A. A. 2007. Scene completion using
millions of photographs. In ACM SIGGRAPH, vol. 26, 4:1 –4:7.

KANEVA, B., SIVIC, J., TORRALBA, A., AVIDAN, S., AND
FREEMAN, W. T. 2010. Infinite images: Creating and exploring
a large photorealistic virtual space. In Proceedings of the IEEE.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. In ACM SIGGRAPH, vol. 22, 277–286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. In ACM SIG-
GRAPH, vol. 24, 795–802.

LIN, W.-Y., LIU, S., MATSUSHITA, Y., NG, T.-T., AND
CHEONG, L.-F. 2011. Smoothly varying affine stitching. In
CVPR.

MANSFIELD, A., PRASAD, M., ROTHER, C., SHARP, T., KOHLI,
P., AND VAN GOOL, L. 2011. Transforming image completion.
In Proc. BMVC.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. In ACM SIGGRAPH, vol. 22, 313–318.

PRITCH, Y., KAV-VENAKI, E., AND PELEG, S. 2009. Shift-map
image editing. In ICCV.

ROTHER, C., BORDEAUX, L., HAMADI, Y., AND BLAKE, A.
2006. Autocollage. In ACM SIGGRAPH, vol. 25, 847–852.

RUITERS, R., SCHNABEL, R., AND KLEIN, R. 2010. Patch-based
texture interpolation. Computer Graphics Forum 29, 4 (June),
1421–1429.

SHECHTMAN, E., RAV-ACHA, A., IRANI, M., AND SEITZ, S.
2010. Regenerative morphing. In CVPR.

SIMAKOV, D., CASPI, Y., SHECHTMAN, E., AND IRANI, M.
2008. Summarizing visual data using bidirectional similarity.
In CVPR.

SUNKAVALLI, K., JOHNSON, M. K., MATUSIK, W., AND PFIS-
TER, H. 2010. Multi-scale image harmonization. In ACM SIG-
GRAPH, vol. 29, 125:1–125:10.

SZELISKI, R., AND SHUM, H.-Y. 1997. Creating full view
panoramic image mosaics and environment maps. In ACM SIG-
GRAPH, 251–258.

TAPPEN, M., FREEMAN, W., AND ADELSON, E. 2005. Recover-
ing intrinsic images from a single image. IEEE Trans. PAMI 27,
9 (sept.), 1459 –1472.

TROPP, J., AND GILBERT, A. 2007. Signal recovery from random
measurements via orthogonal matching pursuit. IEEE Trans. In-
formation Theory 53, 12 (dec.), 4655 –4666.

WEI, L. Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. In ACM SIGGRAPH, 479–
488.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE Trans. PAMI 29, 3 (march), 463
–476.

WHYTE, O., SIVIC, J., AND ZISSERMAN, A. 2009. Get out of
my picture! internet-based inpainting. In BMVC.

XU, L., LU, C., XU, Y., AND JIA, J. 2011. Image smoothing via
L0 gradient minimization. In ACM SIGGRAPH Asia, vol. 30,
174:1–174:12.

http://www.adobe.com/technology/projects/content-aware-fill.html
http://www.adobe.com/technology/projects/content-aware-fill.html

